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Runtime Monitors
• Online monitors run alongside our system.
• Observe the execution of the system to reach a verdict about it.

Figure: System/Application being monitored using a runtime monitor
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Runtime Monitor Trustworthiness

• Consequently, runtime monitors are placed in a position of significant trust within
the systems they protect.

• Generally considered as part of the Trusted Computing Base.

Assumptions:
• Runtime Integrity: The monitor’s logic remains unaltered during execution.
• Continuous Observation: The monitor is still active and observing the system.
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Deployment of Runtime Monitors

• In adverserial environments, monitors are not immune to compromise.
• Monitors are appealing targets for attackers who may attempt to disable or modify

them to suppress detection.
• Runtime verification results collapse if the monitor itself is compromised by an

attacker.

Figure: System/Application being monitored using a runtime monitor
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Secure Deployment of Monitors

• If a system requires monitoring, then it is important to secure the monitor itself.
• There are many attack vectors that can be exploited to compromise a monitor,

especially if the attacker has privileged access to the system.
• Creates a need for defensive mechanisms securing the monitor.

Figure: Runtime monitor being attacked.
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In-Memory Code Tampering

• In practice, a common method of compromising
a program involves modifying its code directly in
memory.

• The monitor, as a program, is susceptible to
tampering by an attacker with sufficient
privileges, who may:

1. Alter its instructions.

2. Disable critical logic.

3. Interfere with its reporting behaviour.
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Proposed Solution

• The challenge described, highlights the need for a mechanism that can reliably
ensure that the monitor’s code loaded in memory remains in its original, untampered
form while executing.

• To address this challenge, this work proposes a remote code attestation mechanism,
where periodic proofs of code state are sent to an external verifier.

Figure: Runtime monitor acting as a Prover to the Verifier

• Allows us to analyse at runtime the monitor’s code state, such that deviations from
the expected state are detected.
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Proposed Solution

Figure: Monitor acting as a Prover to the Verifier
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Proposed Solution

Figure: Monitor acting as a Prover to the Verifier
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Code Measurement

• Code attestation establishes trust in a program’s code by providing evidence of its
integrity to verifier.

• Achieved by capturing a representation of the program’s current code state and
validating it against a known reference value.

Therefore, to enable reliable analysis of the monitor’s code state we need to obtain
consistent and reproducible measurements of the code.

Matthew Mifsud Code Attestation for Monitor Compromise Detection September 14, 2025 10/23



Code Measurement

This can be achieved by:

• A reliable measurement method such as a hash function, since it provides three
desirable properties:

1. Avalanche Effect: A small change produces a significantly different hash output.
2. Collision Resistance: It is computationally infeasible for two different inputs to

produce the same hash output.
3. Fixed-Size Output: The hash output has a fixed size, regardless of the input size.

Measurement = Hash
(
Monitor Code

)
= 355b 67e2 b6cc 0c99 4ed0 d04e 9adb ff65

• Ensuring the code in-memory is in a static state.
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Code Measurement in the JVM

• In the Java Virtual Machine, code is represented as a collection of loaded classes.
• Each class contains bytecode, and metadata which varies across builds.
• The JVM dynamically loads classes as needed, which means that the in-memory

representation of code can change over time.

Using a Java Agent, a special class that hooks into a running Java application we can
collect live bytecode at runtime.

To construct a reliable measurement of the in-memory code state, we need consistent
and repeatable measurements. To achieve this, we:

• Force load classes which may not be immediately loaded.
• Normalise the code by eliminating dynamic metadata.
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Code Measurement in the JVM

Figure: Measurements of all loaded classes
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Threat Model

Attacker Assumptions
• Privileged Access: The attacker has elevated privileges and can modify any part of

the system’s software.
• Network-Level Spoofing: The attacker may observe, intercept, or inject network

traffic between the Prover and Verifier.
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Threat Model

System Assumptions
• Secure Key Distribution: Shared secret is securely distributed to the Verifier and

the Prover, before the system is exposed to potential compromise.
• Hardware Security Module: Shared secret is stored by the Prover in a Hardware

Security Module, a device unreachable by the attacker.
• Trusted Verifier: The Verifier is trusted to securely store secrets and the expected

code measurements.
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Attestation Mechanism (1)

Figure: Protocol between the Prover and Verifier
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Attestation Mechanism (2)

• Message Authentication Code (MAC): Along with the generated proof, the
Prover computes and sends a MAC along with it. A MAC is type of signature used
to verify the integrity and authenticity of a message, by binding the message to a
secret key. The Verifier can then recompute the MAC using the message and shared
secret key, to verify it.

• Timing Constraints: The Prover is required to send the attestation proof within a
specific time window, which is defined by the Verifier. This ensures that the proof is
fresh and has not been precomputed or replayed.
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Security Guarantees (1)

Network-Level Attacks
By using simulated attacker clients, we confirmed that our attestation scheme defends
against:

• Replay Attack: Reuse of a previously valid proof, which violates freshness and
timing constraints.

• Tampered MAC: The proof’s MAC can only be computed by someone who knows
the shared secret, thus ensuring authenticity and integrity.

• Delaying Responses: Proofs are delayed to make room for a time-window big
enough to allow tampering. This violates timing bounds.
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Security Guarantees (2)

In-Memory Tampering
By using simulated tampering clients, we confirmed that our attestation scheme was
succesful in detecting:

• Safe Tampering: Minimal tampering in runtime monitor, by changing a single
value.

• Attestation Logic Tampering: Minimal tampering in attestation logic, by
changing a single value.

• Class Breaking Tampering: Byte flip causing a malformed class.
• Missing Classes: Expected classes not loaded in memory.
• Extra Class Loading: Unexpected classes loaded in memory.
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Performance

Runtime Overhead

• Without Attestation: Minimal CPU usage, ~8% of a single core
• With Attestation: Increase with brief peaks up to ~80% of a single core

Linux · OpenJ9 JVM · Ryzen 7 5800x
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Optimisation

With the aim of balancing security and per-attestation performance, we explored an
optimisation where:

• The proof computation is performed using only a random subset of the in-memory
code.

• This improves performance but obviously requires more attestations to attest the
code completely.

Trade-off: Lower per-attestation overhead vs. faster overall coverage
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Thank you!
Email: matthew.mifsud.22@um.edu.mt
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