L-Universita ta' Malta
Faculty of Information &
Communication Technology

Code Attestation for Monitor Compromise
Detection

Matthew Mifsud
& Christian Colombo

Faculty of Information & Communication Technology
Department of Computer Science
University of Malta

September 14, 2025

L-Universita ta' Malta
Runtime Monitors Faculty of Information &

Communication Technology

® Online monitors run alongside our system.

® QObserve the execution of the system to reach a verdict about it.

system events

. analyses hibit:
Monitor <—(‘ el |ex|es|es g <~ (| System

[
[

[

|

| .

| execution trace
[

|

|

[

[

Instrumentation

Figure: System/Application being monitored using a runtime monitor

L-Universita ta' Malta
Runtime Monitor Trustworthiness RacHt/ichinfoimationie

Communication Technology

® Consequently, runtime monitors are placed in a position of significant trust within
the systems they protect.

e Generally considered as part of the Trusted Computing Base.

Assumptions:
® Runtime Integrity: The monitor's logic remains unaltered during execution.

e Continuous Observation: The monitor is still active and observing the system.

% L-Universita ta' Malta
1 1 Faculty of Inf tion &
Deployment of Runtime Monitors L

® |n adverserial environments, monitors are not immune to compromise.

® Monitors are appealing targets for attackers who may attempt to disable or modify
them to suppress detection.

® Runtime verification results collapse if the monitor itself is compromised by an
attacker.

Monitored System

Runtime Monitor

y

Figure: System/Application being monitored using a runtime monitor

% L-Universita ta' Malta
3 F Ity of Inf tion &
Secure Deployment of Monitors e il SO

® |f a system requires monitoring, then it is important to secure the monitor itself.

® There are many attack vectors that can be exploited to compromise a monitor,
especially if the attacker has privileged access to the system.

® Creates a need for defensive mechanisms securing the monitor.

Runtime Monitor Attacker

Monitored System

Figure: Runtime monitor being attacked.

% L-Universita ta' Malta
- 1 Faculty of Information &
In Memory COde Tamperlng Communication Technology

® |n practice, a common method of compromising
a program involves modifying its code directly in

memory.
® The monitor, as a program, is susceptible to
tampering by an attacker with sufficient
P &by Runtime Monitor -—| Code Manipulation

privileges, who may:

1. Alter its instructions.

2. Disable critical logic. Monitored System

3. Interfere with its reporting behaviour.

L-Universita ta' Malta
PI‘Op Osed SOlutiOH Faculty of Information &

Communication Technology

® The challenge described, highlights the need for a mechanism that can reliably
ensure that the monitor's code loaded in memory remains in its original, untampered
form while executing.

® To address this challenge, this work proposes a remote code attestation mechanism,
where periodic proofs of code state are sent to an external verifier.

. Attestation
Verifier Prover

Figure: Runtime monitor acting as a Prover to the Verifier

e Allows us to analyse at runtime the monitor's code state, such that deviations from
the expected state are detected.

Proposed Solution

L-Universita ta' Malta
Faculty of Information &
Communication Technology

Verifier

Runtime Monitor

Monitored System

Figure: Monitor acting as a Prover to the Verifier

Proposed Solution

L-Universita ta' Malta
Faculty of Information &
Communication Technology

Verifier

Runtime Monitor

Monitored System

Hardware
Security Module

Figure: Monitor acting as a Prover to the Verifier

% L-Universita ta' Malta
Faculty of Information &
COde Measurement Communication Technology

® Code attestation establishes trust in a program’s code by providing evidence of its
integrity to verifier.

e Achieved by capturing a representation of the program’s current code state and
validating it against a known reference value.

Therefore, to enable reliable analysis of the monitor's code state we need to obtain
consistent and reproducible measurements of the code.

L-Universita ta' Malta
COde Measurement Faculty of Information &

Communication Technology

This can be achieved by:

® A reliable measurement method such as a hash function, since it provides three
desirable properties:

1. Avalanche Effect: A small change produces a significantly different hash output.

2. Collision Resistance: It is computationally infeasible for two different inputs to
produce the same hash output.

3. Fixed-Size Output: The hash output has a fixed size, regardless of the input size.

Measurement = Hash(Monitor Code) = |355b 6762 b6cc 0c99 4ed0 d04e 9adb £165

® Ensuring the code in-memory is in a static state.

% L-Universita ta' Malta
3 Faculty of Information &
Code Measurement in the JVM e il SO

® |n the Java Virtual Machine, code is represented as a collection of loaded classes.
® Each class contains bytecode, and metadata which varies across builds.

® The JVM dynamically loads classes as needed, which means that the in-memory
representation of code can change over time.

Using a Java Agent, a special class that hooks into a running Java application we can
collect live bytecode at runtime.

To construct a reliable measurement of the in-memory code state, we need consistent
and repeatable measurements. To achieve this, we:

® Force load classes which may not be immediately loaded.

® Normalise the code by eliminating dynamic metadata.

L-Universita ta' Malta
Code Measurement in the JVM Faculty of Information &

Communication Technology

"64179b0ea286ec52484187359ead821affa700ebl8afb3d26a33ff6444dded72",
"e83810ff62feceblf9662e9dfa85c5a2839fcel2ael57f09338735936fed8496",
"1220676afd9e6b8adabb108501a8d8cf7a726eab05d2455ca88ed917d4152ed6",
"73421db98817874b8f2df97a57fddald81df694aaa26a20a9f13308afaad9ce8",
e$HmMacSHA256": "289111ae72995138ae4356ebaflfcb@8ea264b975f4f03fad0a3f4eb29c906d3",
p er.SunJCE": "789b11781ef2e58b7ef6713a9e58baf813830b21cal29c9163b248clccf8d4e3”,
"@c7e5c2c92ddd1c545dc40bed3fcbboe97db63ed4898aad89fef9087901b307",
"99f0c48819ea5963195e8964129e2823caec8577e86e9b483339e125d9182868",
"af5035ade6b8433eb9db9cf8614c449dcc95f8871b897277ceb0196c06316821",
"7a07a73493ed8998250049d53f65d1df9baf06c07832095a2203166Fbd13536",
"5e208e11524b70270e082dd453035c3c3a51a15815fc915f46bbo2ealeb3aob2”,
"576Tb958084a9d51cd4be36d69fe95ae631f9ad4ed0lcfb3c629b17¢c31cdb6238",
": "bf56cd8560d2d9e97aed4e7d7c143460c9b7858a5458b66c59ablaelafoo3b6c8™,
f4b092ee88aeb66b7f1e1baa73e8d93aba0®21063+73bcf2914193+f93882acc",
"85ff5593d85f7d31e01360c6fdb99a3bbcOa7c9b4504eab0c5bcob0141386e6b™,
"93f5d16dfaedb1843fc86aec82bldeb266fdcd93aecc87d5a60e5b2a62c25656" ,
ion": "4c667f8f46a30f0a5b48e65653baalobf10353f64cfad7178c4e317b627elado”
"16dc66555ed99eff4fableld52f3d0ea%90390f621a095400a01bdae02a193b07",
"739648b2add@a2da93ba8ec®79fb5e70616a29c5ed4alb37aea5ec6feaadfdal6™,

Figure: Measurements of all loaded classes

% L-Universita ta' Malta
Faculty of Information &
Threat MOdel Communication Technology

Attacker Assumptions
® Privileged Access: The attacker has elevated privileges and can modify any part of
the system’s software.
® Network-Level Spoofing: The attacker may observe, intercept, or inject network
traffic between the Prover and Verifier.

L-Universita ta' Malta
Threat MO del Faculty of Information &

Communication Technology

System Assumptions

e Secure Key Distribution: Shared secret is securely distributed to the Verifier and
the Prover, before the system is exposed to potential compromise.

® Hardware Security Module: Shared secret is stored by the Prover in a Hardware
Security Module, a device unreachable by the attacker.

® Trusted Verifier: The Verifier is trusted to securely store secrets and the expected
code measurements.

L-Universita ta' Malta
Attestation Mechanism (1) Faciieof (niommetiona

Communication Technology

(Runtime monitor)

Verifier _ Prover
1. Cryptographic Challenge
O (example: Pseudorandom number) O
4 Proof < 3. Response 2. Proof Computation
Validation

(using challenge +
current in memory
code.)

Figure: Protocol between the Prover and Verifier

% L-Universita ta' Malta
1 1 Faculty of Information &
AtteStatlon MeChanlsm (2) Cor:myunicatiorn Te::hnology

® Message Authentication Code (MAC): Along with the generated proof, the
Prover computes and sends a MAC along with it. A MAC is type of signature used
to verify the integrity and authenticity of a message, by binding the message to a
secret key. The Verifier can then recompute the MAC using the message and shared
secret key, to verify it.

Monitor/Prover Measurement/Proof MAC Verifier

® Timing Constraints: The Prover is required to send the attestation proof within a
specific time window, which is defined by the Verifier. This ensures that the proof is
fresh and has not been precomputed or replayed.

L-Universita ta' Malta
Securlty Guarantees (1) Faculty of Information &

Communication Technology

Network-Level Attacks
By using simulated attacker clients, we confirmed that our attestation scheme defends
against:
® Replay Attack: Reuse of a previously valid proof, which violates freshness and
timing constraints.
® Tampered MAC: The proof's MAC can only be computed by someone who knows
the shared secret, thus ensuring authenticity and integrity.
® Delaying Responses: Proofs are delayed to make room for a time-window big
enough to allow tampering. This violates timing bounds.

L-Universita ta' Malta
Securlty Guarantees (2) Faculty of Information &

Communication Technology

In-Memory Tampering
By using simulated tampering clients, we confirmed that our attestation scheme was
succesful in detecting:
e Safe Tampering: Minimal tampering in runtime monitor, by changing a single
value.
¢ Attestation Logic Tampering: Minimal tampering in attestation logic, by
changing a single value.

Class Breaking Tampering: Byte flip causing a malformed class.

Missing Classes: Expected classes not loaded in memory.

Extra Class Loading: Unexpected classes loaded in memory.

L-Universita ta' Malta
Performance Faculty of Information &

Communication Technology

Runtime Overhead

e Without Attestation: Minimal CPU usage, ~8% of a single core

® With Attestation: Increase with brief peaks up to ~80% of a single core

Linux - OpenJ9 JVM - Ryzen 7 5800x

% L-Universita ta' Malta
. . 0 Faculty of Information &
Optlmlsat 101 Communication Technology

With the aim of balancing security and per-attestation performance, we explored an
optimisation where:

® The proof computation is performed using only a random subset of the in-memory
code.

® This improves performance but obviously requires more attestations to attest the
code completely.

Trade-off: Lower per-attestation overhead vs. faster overall coverage

L-Universita ta' Malta
Faculty of Information &
Communication Technology

Thank youl!

Email: matthew.mifsud.22@um.edu.mt

mailto:matthew.mifsud.22@um.edu.mt

L-Universita ta' Malta
Faculty of Information &
References Communication Technology

ﬁ M. Mifsud, "Code Attestation for Monitor Compromise Detection", 2025.

[4 C. Colombo, A. Curmi, and R. Abela, “RVisec: Secure deployment of software
monitors,” in Proc. VORTEX, Vienna, 2024, pp. 13-18..

