
Code Attestation for Monitor
Compromise Detection

MatthewMifsud

Supervisor: Prof. Christian Colombo

June 2025

Submitted in partial fulfilment of the requirements

for the degree of B.Sc. (Hons) (Computing Science).

Abstract

Runtime monitors are programs that observe a system’s execution to detect deviations

from expected behaviour. This makes them valuable in security contexts, where they

can be used for the detection of malicious activity. However, their effectiveness

depends on the assumption that the monitor itself has not been compromised. From

an attacker’s point of view, the monitor poses a direct obstacle to evading detection,

making it a high-value target. An attacker with sufficient privileges may modify the

monitor’s in-memory code to ensure that malicious activity goes undetected. Without

strong assurances that the monitor remains secure and untampered, the reliability of

the monitoring process, and thus the security of the entire system is undermined.

This work addresses this challenge by designing and implementing a remote code

attestation mechanism. Remote code attestation is a cryptographic technique in which

proofs describing the state of executing code are periodically generated and sent to an

external verifier for validation. The proposed solution adopts a challenge–response

protocol, where the monitor acts as a prover and responds to unpredictable challenges

with attestations of its current code state. Any deviation from the expected state

results in a verification failure, enabling timely detection of tampering.

Through the development of a prototype and its evaluation under multiple tampering

scenarios, we demonstrate that the mechanism reliably detects in-memory code

modifications. From our testing, we deduce that full attestation introduces moderate

overhead, while an optimisation based on pseudorandom traversal can reduce this

cost. This enables flexible trade-offs between performance and security, making

remote code attestation both a practical and effective mechanism for detecting

tampering of runtime monitors.

i

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Prof. Christian Colombo,

for his invaluable guidance, patience, and support throughout this work. His advice,

feedback, and constant willingness to engage in discussions have been instrumental in

shaping the direction of this project and navigating its challenges.

I am also very grateful to my family for their support and understanding, especially

during the more stressful periods of this journey. Their encouragement has been a

source of motivation.

Finally, I would like to thank my friends and classmates for their helpful discussions and

camaraderie, which have made this journey truly unforgettable.

ii

Contents

Abstract i

Acknowledgements ii

Contents v

List of Figures vi

List of Tables vii

List of Abbreviations 1

Glossary of Symbols 1

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Overview . 2

1.3 Proposed Solution . 2

1.3.1 Aims and Objectives . 3

1.4 Contributions . 3

2 Background & Literature Review 4

2.1 Runtime Monitors . 4

2.1.1 Security . 4

2.2 Measuring In-Memory Code . 5

2.2.1 Measurement Methodologies . 6

2.2.2 Bytecode . 6

2.3 Remote Attestation . 7

2.3.1 Hardware-Based Attestation . 7

2.3.2 Software-Based Attestation . 8

2.3.3 Hybrid Attestation . 8

2.4 Attestation Schemes . 8

2.4.1 Cryptographic Primitives . 8

2.4.2 Challenge-Response Protocol . 10

iii

2.4.3 SWATTAttestation Scheme . 10

2.5 Coupon Collector’s Problem . 12

2.5.1 Problem Description . 13

2.5.2 Calculating the expectation . 13

2.5.3 Applicability . 14

2.6 Related Work . 14

3 Specification & Design 16

3.1 Design Criteria . 16

3.2 Threat Model . 17

3.2.1 Attacker Assumptions . 17

3.2.2 System Assumptions . 17

3.3 Bytecode Measurement . 18

3.3.1 Challenges . 18

3.3.2 Proposed Methodology . 19

3.4 Scheme Design . 19

3.4.1 Prover-Verifier Architecture . 19

3.4.2 Measurement Procedure . 20

3.4.3 Self-Attestation . 21

3.4.4 Challenge-Response Protocol . 21

3.4.5 Attestation Authentication . 22

3.4.6 Response Time Bounds . 23

3.5 Attestation Protocol . 23

4 Implementation 25

4.1 Runtime Monitor . 25

4.2 Prover . 25

4.2.1 Java Agent . 25

4.2.2 Class Retransformation . 26

4.2.3 Bytecode Collection . 26

4.2.4 Static Bytecode Representation . 26

4.2.5 Bytecode Measurement . 27

4.2.6 Attestation Authentication . 28

4.2.7 Sending Proof to the Verifier . 28

4.3 Verifier . 28

4.3.1 Reference Hashes . 28

4.3.2 Connection Handling . 29

4.3.3 Challenge Issuance . 29

4.3.4 Response Time Bounds . 29

iv

4.3.5 Proof Verification . 29

5 Evaluation & Optimisation 30

5.1 Evaluation Setup . 30

5.2 Security Evaluation . 30

5.2.1 Network-Level Attacks . 30

5.2.2 In-Memory Code Tampering Attacks 31

5.3 Performance Evaluation . 32

5.4 Optimisation (Pseudorandom Hash Traversal) 33

5.4.1 Implementation . 34

5.4.2 Evaluation . 34

6 Conclusion & Future Work 35

6.1 Conclusion . 35

6.2 Future Work . 35

v

List of Figures

Figure 2.1 Challenge–Response Protocol . 10

Figure 3.1 Prover-Verifier Architecture Illustration. 20

vi

List of Tables

Table 2.1 RVsec Technology Stack. 15

Table 5.1 Attack Scenarios and Verifier Outcomes 31

Table 5.2 In-Memory Tampering Scenarios and Verifier Outcomes 32

Table 5.3 Average Performance Comparison . 32

Table 5.4 Effect of Class Subset Size on CPU Usage and Attestations Required . . 34

vii

1 Introduction

1.1 Motivation

Protecting systems from malicious behaviour requires the ability to detect unexpected

program behaviour during execution. One approach to achieving this is through the

use of runtime monitors, programs that observe a system’s execution to identify

deviations from expected or permitted behaviour. Runtime monitors emerged from the

need to improve the reliability of increasingly complex software systems, particularly

where traditional testing and exhaustive verification are infeasible. While their primary

role was originally to enforce correctness, safety, and compliance during execution, this

same capability also makes them effective in security contexts, where analysing live

behaviour is essential for detecting anomalies and signs of compromise.

Although runtime monitors provide important security capabilities for detecting

anomalous behaviour during execution, their deployment introduces a new point of

dependency within the system. This is because the monitor itself is not immune to

compromise, and is continuously executing alongside the rest of the system, making it

an attractive target for adversaries. An attacker may attempt to disable, bypass, or

tamper with the monitor to suppress detection and allow malicious activity to go

undetected. If such tampering is successful, the system may continue to operate under

the false assumption that it is being properly monitored, undermining the security

guarantees provided by the monitor. Therefore, ensuring that the monitor remains

operational and unmodified during execution is critical to maintaining trust in the

monitoring process. Providing this assurance is challenging, as security mechanisms

themselves can become potential points of vulnerability. Consequently, runtime

monitors benefit from additional layers of protection that serve to harden their

operation and improve the overall resilience of the security architecture.

In practice, a common method of compromising a program involves modifying its code

directly in memory. The monitor, as a program executing in memory, is particularly

susceptible to tampering by an attacker with sufficient privileges, who may alter its

instructions, disable critical logic, or interfere with its reporting behaviour. Such

tampering poses a direct threat to the monitor’s trustworthiness and necessitates a

dedicated layer of protection. Consequently, maintaining the monitor’s security

depends on ensuring that its code remains unaltered and fully functional throughout

execution. Addressing this challenge requires a mechanism capable of verifying, with

high confidence, that the monitor’s code remains untampered while the system is

running.

1

1 Introduction

1.2 Problem Overview

Verifying the state of a runtime monitor’s code during execution is particularly

challenging in adversarial environments. An attacker with sufficient privileges may not

only tamper with the monitoring logic to suppress detection, but also interfere with

any local mechanism responsible for verifying that the logic remains unmodified. In

such cases, the system can no longer be trusted to perform verification reliably. To

provide meaningful assurance, verification must be carried out by an external entity

that remains beyond the attacker’s control and can independently assess the monitor’s

code. This requires generating runtime proofs that accurately represent the executing

code. These proofs must provide trustworthy evidence that the monitor remains in its

original, unmodified form. Without such guarantees, an attacker could forge or

manipulate the proof, rendering the verification process ineffective.

In addition, assessing a program’s code during execution is inherently difficult. Code

loaded and running in memory is subject to dynamic behaviours such as compiler

optimisations [1] and memory layout randomisation techniques [2] that introduce

non-determinism, resulting in variability in how it appears at runtime. This variability

makes it challenging to distinguish between expected and malicious modifications.

1.3 Proposed Solution

The limitations identified above highlight the need for a mechanism capable of

verifying the monitor’s code independently of the potentially compromised system. To

address the discussed challenges and enable reliable compromise detection, this work

proposes a remote code attestation mechanism. Remote code attestation is a

cryptographic technique in which proofs describing the current state of executing code

are generated and sent to an external verifier for validation. By comparing these proofs

against a trusted reference, it becomes possible to detect unauthorised modifications

introduced at runtime. To defend against forgery or replay of proofs, the proposed

solution uses a challenge–response protocol between the verifier and the runtime

monitor. The monitor acts as a prover, periodically generating proofs of its code in

response to unpredictable challenges issued by the verifier. Any deviation from the

expected code state results in a validation failure, enabling timely detection of

compromise. A prototype implementation is developed to demonstrate the feasibility

of the approach as well as an optimisation. The system is tested against multiple

tampering scenarios to confirm its ability to detect runtime modification, and its

performance overhead is measured.

2

1 Introduction

1.3.1 Aims and Objectives

The aim of this work is to investigate the following research question:

How can remote code attestation be used to continuously and independently

verify that a runtime monitor’s code has not been tampered? Furthermore, how

viable is this technique in practice with respect to security guarantees and

operational constraints?

The objectives can be summarised as follows:

1. Design and implement a mechanism for generating cryptographic proofs

representing the runtime monitor’s in-memory code during execution.

2. Design and implement the corresponding mechanism to enable a verifier to

validate the prover’s attestations, through the appropriate protocol.

3. Implement a prototype demonstrating continuous code attestation of a runtime

monitor.

4. Define and evaluate the security of the system under a formal threat model,

including adversaries attempting to forge proofs or bypass the attestation

mechanism.

5. Evaluate and optimise the performance of the attestation mechanism.

1.4 Contributions

This project makes the following contributions:

• While remote code attestation has been explored in other domains, this work

applies it to the protection of runtime monitors against in-memory tampering, an

underexplored use case.

• This work demonstrates that code attestation can be effectively applied to Java

bytecode, indicating that the technique is viable not only for low-level binary

code but also for intermediate-level representations.

• This work presents a prototype that is evaluated under multiple tampering

scenarios, offering insight into detection capabilities and the associated

performance trade-offs.

3

2 Background & Literature Review

2.1 Runtime Monitors

Runtime monitors are software components grounded in the principles of runtime

verification, a formal method that analyses a system’s execution to determine whether

it satisfies or violates a given specification. Unlike other formal methods such as model

checking or static analysis, which aim to verify all possible execution paths, runtime

verification considers only the actual execution path taken during a system run [3].

This allows for the dynamic detection of violations in deployed systems, trading

completeness for scalability and practicality [3].

The system whose behaviour is being observed, known as the System Under Scrutiny

(SUS), produces a stream of runtime events [3] during its execution, such as function

calls, variable assignments, or state changes. A runtime monitor processes these events

sequentially to determine whether the system’s behaviour conforms to a formally

specified set of properties. These specifications are typically written in formal

specification languages, that define which sequences of events or state transitions are

considered correct or permissible according to the intended system design [4].

To enable this analysis, instrumentation is required to bridge the gap between the

execution of the SuS and the monitor’s observations [5]. Instrumentation is the

mechanism that makes the behaviour of a program observable by determining which

runtime events should be captured for analysis [6]. This is typically done by modifying

the program to extract relevant events as they occur, producing an execution trace that

the monitor can analyse against a formal specification.

2.1.1 Security

The ability to detect behavioural deviations during execution makes runtime monitors

well-suited for deployment in security-sensitive environments [7]. In such settings,

monitors act as active defence mechanisms, raising alerts in response to anomalous

behaviour caused by malicious activity. This capability enables the detection of threats

as they unfold, enhancing the system’s overall resilience against compromise.

Consequently, runtime monitors are placed in a position of significant trust within the

systems they protect. In fact, they are generally considered part of the system’s trusted

computing base and are therefore expected to operate reliably, behave correctly, and

remain free from compromise [5].

4

2 Background & Literature Review

Due to their critical role, monitors are of particular interest to adversaries. An attacker

who succeeds in disabling or subverting the monitor can evade detection and carry out

attacks without raising alarms. To mitigate this risk, monitors can be designed with

dedicated security architectures [7–10] that enforce strict separation from the

monitored system, ensuring they remain secure even if the rest of the system is

compromised. This architectural separation not only reduces the monitor’s exposure to

threats but also enables more focused security which may be too costly or impractical

to implement system-wide [7].

This need for targeted protection highlights the importance of adopting layered

security strategies to defend runtime monitors against a range of attack vectors. As

proposed by the RVsec technology stack [7], by combining techniques such as privilege

separation, containerisation, performance monitoring, monitor code attestation and

tamper-evident capabilities, the monitor can be more effectively safeguarded. The

objective of such layering is to ensure that, even if one defensive measure fails, others

remain active to preserve trust in the monitoring process under adversarial conditions.

Among these protective layers, this work focuses on one particularly critical layer, code

attestation. Code attestation is a cryptographic technique that enables the verification

of a program’s code state at runtime. This offers a mechanism to ensure that the

monitor’s code remains in its original, untampered form while executing, even when

the host system may be compromised. This approach contributes to the broader goal

of maintaining trust in the monitoring process.

2.2 Measuring In-Memory Code

Code attestation establishes trust in a program’s code during execution by providing

evidence to a verifier that the code remains in its original, untampered state. This is

achieved by capturing a representation of the program’s current code state and

validating it against a known reference value that reflects the expected, untampered

state of the code. This comparison enables the detection of unauthorised

modifications that may have been introduced after the program was loaded into

memory. Unlike static binary analysis, in-memory measurement verifies the code that is

currently loaded and executing. Consequently, the ability to obtain accurate and

reliable measurements of the code while it resides in memory is critical, as any

undetected modifications at this stage would undermine the entire attestation process.

5

2 Background & Literature Review

2.2.1 Measurement Methodologies

The code measurement process typically [11][12][13] involves reading memory

contents and computing a measurement that reflects the state of the code during

execution. This is usually achieved by directly accessing memory regions containing

machine code and calculating a cryptographic digest over their contents. The method

of memory access depends on the system’s architecture and security requirements.

Memory can be accessed using privileged software at the operating system level

through system calls [14], or by trusted hardware components such as Trusted Platform

Modules, which provide secure access to memory [15]. Dedicated Direct Memory

Access [15] hardware can also be used to access memory contents securely without

involving the main processor.

2.2.2 Bytecode

While direct measurement of machine code is feasible particularly in embedded

systems with static memory layouts and tightly controlled execution environments

[16], it presents challenges in more complex computing environments. Variability

introduced by factors such as compiler optimisations [1], memory layout randomisation

techniques [2], and differences in platform-specific binary formats [17] complicate the

generation of consistent measurements required for reliable code attestation. To

mitigate these challenges, measuring higher-level code representations such as

bytecode can provide a more practical and effective alternative.

Bytecode is an intermediate representation of program code produced after

compilation from source code and designed for execution within virtual machines.

Unlike binaries, bytecode is platform-independent and exhibits a more stable and

deterministic structure [18]. Some examples include; Java bytecode executed by the

Java Virtual Machine and Microsoft’s Common Intermediate Language used by the

.NET Common Language Runtime. This higher-level representation reduces variability

in code layout and content across executions, thus making bytecode well-suited for

scenarios such as code attestation [18, 19], where consistent and verifiable

measurements are critical.

Additionally, some platforms, such as Java, implement load-time bytecode verification

to enforce basic safety guarantees before code is executed. This process is handled by

the Java bytecode verifier, a component of the Java Virtual Machine (JVM), which

performs a series of structural and type safety checks on incoming class files. These

checks verify that the bytecode conforms to the expected class file format, enforce

type safety, prohibit illegal type casts, prevent stack underflows, and ensure correct

6

2 Background & Literature Review

management of the operand stack [20]. While these mechanisms improve baseline

code safety, they are limited to static analysis before execution and do not provide

guarantees about the code’s integrity during runtime.

Consequently, load-time bytecode verification alone is insufficient to ensure secure

execution throughout the lifetime of a program [21]. Dynamic features, such as

runtime class loading and runtime code modification through reflection, introduce

additional risks that can undermine initial safety checks; for instance, an attacker may

inject a malicious class at runtime and use reflection to instantiate and execute it,

bypassing earlier verification mechanisms [22]. These risks highlight the necessity for

runtime code verification mechanisms, such as remote code attestation, even in

managed environments that perform initial verification at load time.

2.3 Remote Attestation

Remote attestation (RA) is a distinct security service that allows a remote Verifier to

reason about the state of an untrusted remote Prover [23]. More specifically, it is a

method for detecting the presence of malware on devices by providing evidence of

software integrity to a remote Verifier [24]. There are different types of remote

attestation, ranging from entirely software-based to fully hardware-based.

2.3.1 Hardware-Based Attestation

Hardware-based attestation schemes rely on dedicated trusted computing

architectures, such as Hardware Security Modules (HSMs) and Trusted Platform

Modules (TPMs), which enable secure storage and computation, as well as dedicated

processor architectures like Intel SGX and ARM TrustZone [23, 25]. These

hardware-based approaches provide strong security, as secret keys and measurements

are protected by hardware.

• Hardware Security Modules: Physical devices used to perform cryptographic

operations and manage, generate, and securely store cryptographic keys [26].

• Trusted Platform Modules: Dedicated hardware chips that are typically

integrated into a system’s motherboard and provide secure storage for

cryptographic keys, measurements, and other sensitive information [23, 27].

7

2 Background & Literature Review

2.3.2 Software-Based Attestation

Software-based attestation schemes aim to achieve software integrity verification

without specialised hardware. This makes them attractive for legacy or low-end

devices that lack the hardware support [25]. Their root of trust is solely estabilished

through software, typically by using carefully crafted protocols, tight timing constraints,

and cryptographic functions, under certain assumptions about the adversary. The

attestation process is performed by running the program directly from memory, which

allows it to check and validate the system’s code state [23].

2.3.3 Hybrid Attestation

Given the weaker trust anchors in software-based attestation, that is, foundational

components that can be relied on and trusted, researchers have explored hybrid

approaches that incorporate minimal hardware features. These hybrid approaches

[28–31] combine software with hardware modifications to offer more reliable

attestation guarantees.

2.4 Attestation Schemes

Within remote attestation, different schemes have been developed over the years to

address varying security requirements and system constraints. Despite their

differences, these schemes rely on fundamental components that provide essential

security guarantees. While the specific selection and integration of these components

may differ across schemes, the underlying principles often remain consistent.

Therefore, the following is a summary of the key components that are commonly used

in remote attestation schemes, along with a brief overview of some notable schemes.

2.4.1 Cryptographic Primitives

Hash Functions

A hash function [32] is a deterministic mathematical function that takes an input and

generates a fixed-size string of characters, uniquely representing the input data. Hash

functions have the following properties:

1. Pre-image Resistance: Hash functions are trapdoor functions, meaning it is

computationally infeasible to reverse the process and reconstruct the original

input from the hash value.

8

2 Background & Literature Review

2. Avalanche Effect: A small change in the input produces a drastically different

output.

3. Collision Resistance: It is highly unlikely for two different inputs to produce the

same hash value.

In the context of remote attestation, hash functions are used to compute a fixed-size

digest of the in-memory code by the prover. A key feature of hash functions is the

avalanche effect where even a small change to the input results in a drastically different

hash output. This makes hash functions ideal for verifying data. Apart from this, the

properties of pre-image resistance and collision resistance ensure that the hashed data

cannot be easily reversed or duplicated, maintaining both its integrity and

confidentiality.

Message Authentication Codes (MACs)

AMessage Authentication Code (MAC) [32] is a cryptographic checksum used to verify

the integrity and authenticity of a message. By checksum we mean, a block of data

derived from another block of data for the purpose of detecting errors. A MAC is

created by combining the message data with a secret key. The MAC is then transmitted

along with the message. Upon receiving the message and its MAC, the receiver uses

the shared key to compute a newMAC from the message. If the computed MAC

matches the one that was sent, the message is confirmed to be both authentic and

unchanged.

In the context of remote attestation, MACs are used to ensure the authenticity of the

attestation proof sent to the verifier. The prover possesses a secret key that is known

only to them and the verifier. Since only the prover knows the key, only the prover can

generate the correct MAC. This ensures that the attestation is authentic, as no other

prover can forge a valid MAC without knowledge of the secret key.

Pseudorandom Number Generators (PRNGs)

A Pseudorandom Number Generator (PRNG) [32] is an algorithm used to generate a

sequence of numbers that appears random, but is actually determined by an initial

value known as a seed. Unlike true random number generators, which rely on

unpredictable physical processes, PRNGs use a deterministic process to produce a

sequence of numbers that mimic randomness. As a result, a sequence of numbers

generated by a PRNG is reproducible if the same seed is used.

PRNGs are used in remote attestation to introduce unpredictability into the process.

9

2 Background & Literature Review

One key application is generating nonces, which are arbitrary numbers that can be used

only once in communication. Nonces help defend against instances where an attacker

reuses a previous proof to impersonate the prover. In addition, PRNGs are also used to

determine the order in which in-memory code is read or hashed during attestation. By

using a PRNG, the sequence of memory accesses becomes less predictable.

2.4.2 Challenge-Response Protocol

A common approach for implementing remote attestation is through a

challenge-response protocol [23]. This protocol is designed to allow a trusted verifier

to verify the integrity and authenticity of a Prover’s state, and can be summarised as

follows:

1. The Verifier generates a challenge, which typically takes the form of a random

number or bitstring, and sends it to the Prover.

2. The Prover computes a proof based on the challenge and its current state, and

sends it back to the Verifier.

3. The Verifier validates the Prover’s response by recomputing the expected proof

based on the challenge and its knowledge of the expected state.

Verifier Prover

(1) Random challenge c c

r (2) r = Attest(c, state)

Expected state h

(3) Verify(h, c, r)

Figure 2.1 Challenge–Response interaction between a Verifier and a Prover.

2.4.3 SWATTAttestation Scheme

As an early and influential example of software-based remote attestation, the SWATT

scheme [16] demonstrates how some of these fundamental concepts can be applied in

practice. SWATT (Software-based ATTestation) is a remote attestation scheme

designed to verify the memory contents of an embedded device. It ensures that no

malicious changes have been made to the device’s memory, all without requiring

specialised hardware.

10

2 Background & Literature Review

Scheme Description

The following is a step-by-step overview of the SWATT attestation scheme:

1. Challenge Generation

The Verifier sends a random challenge c to a Prover.

2. PseudorandomMemory Traversal

(a) The Prover receives the challenge c, and uses it as a seed in a PRNG, to

generate a pseudorandom sequence S = [s1, s2, ..., sn].

(b) The sequence S is then used to determine the order in which the Prover’s

memory will be accessed. This memory traversal order is unpredictable,

which makes it resistant to attacks that rely on knowing the order of

memory access.

3. High Probability for Detecting Changes

In order to ensure that every memory location is attested with high probability, if

there are n memory locations, O(n(ln(n))) memory accesses, need to be made.

This is derived from the result of the Coupon Collector’s Problem, explained in

Section 2.5.

4. Checksum Calculation

Let the Prover’s memory be represented asM = {m1,m2, ...,mn}, wheremi is the

memory location at index i.

As the Prover accesses each memory location in the sequence S, a checksum H is

computed over the memory, using the proposed checksum function [16].

H = Checksum(ms1 ,ms2 , ...,msn) (2.1)

5. Response

Once the memory traversal is complete and the checksum is computed, the

Prover sends the checksum to the Verifier as response H . This checksum serves

as proof of the prover’s memory integrity.

6. Verification

The Verifier, having a copy of the expected memory, recomputes the expected

checksum H ′ by using the same challenge c as the seed in the PRNG to

11

2 Background & Literature Review

pseudorandomly traverse the expected memory.

IfH = H ′, the Prover’s memory is confirmed to be unaltered.

Additional Security Features

To further enhance the security of the SWATT attestation scheme, two additional

features can be integrated, drawing from existing works in the literature.

Timing-based Detection

Both SWATT and other attestation schemes [31, 33] use a timing-based

mechanism to detect malware. The time taken to compute the attestation proof

is measured, and significant deviations from the expected time could indicate

malware presence. This is based on the assumption that malware introduces

additional overhead, leading to longer computation times. Thus, large timing

discrepancies may signal that the device has been compromised.

Self-Integrity Verification

Pioneer [33] is a software-based remote attestation scheme that shares

similarities with SWATT, but enhances security by verifying the code of the

attestation logic itself.

• In addition to computing the memory checksum H , Pioneer also computes

Hattest, a hash of the attestation function itself.

Hattest = Hash(Attestation Code) (2.2)

• After calculating both H and Hattest, the Prover sends both values to the

Verifier as the attestation proof. This ensures that the attestation code has

not been tampered with, and that the attestation process is as expected.

2.5 Coupon Collector’s Problem

In probability theory, the Coupon Collector’s Problem refers to the mathematical

analysis of the process by which all distinct items are collected from a set, where each

item is selected randomly.

12

2 Background & Literature Review

2.5.1 Problem Description

Imagine you have a set of n distinct items, and each time you select an item, it is

chosen randomly and uniformly from the set. The goal is to collect one of each item.

The Coupon Collector’s Problem asks how many selections, on average, it will take to

collect all n distinct items.

Each time you pick an item, you may already have some of the items but not others. As

you collect more items, the probability of getting an item you don’t have decreases

because fewer distinct items remain to be collected.

2.5.2 Calculating the expectation

1. On the first pick, any item selected will be a distinct item, so it takes 1 pick to get

a distinct item.

2. On the second pick, n−1 distinct items are left to collected. The probability of

getting a distinct item is therefore n−1
n
.

3. On the third pick, n−2 distinct items are left to collected. The probability of

getting a distinct item is therefore n−2
n
.

The expected number of picks required to collect all n distinct items is the sum of the

expected number of picks for each item. This leads to the following formula for the

expected number of picks:

E(n) = n ·
(
1 +

1

2
+

1

3
+ ...+

1

n

)
(2.3)

The formula can be approximated as:

E(n) ≈ n · ln(n) + γn (2.4)

where γ is the Euler-Mascheroni constant, approximately equal to 0.5772.

Suppose you have 5 distinct items to collect, and each time you select an item, it is

random. According to the Coupon Collector’s Problem, the expected number of

selections to collect all items is 12:

E(5) = 5 ·
(
1 +

1

2
+

1

3
+

1

4
+

1

5

)
≈ 5 · 2.2833 ≈ 11.4167 (2.5)

13

2 Background & Literature Review

2.5.3 Applicability

Especially in the context of pseudorandom memory traversal, as discussed in SWATT,

the Coupon Collector’s Problem is relevant because it provides a theoretical

foundation for ensuring that every memory location is attested with high probability.

By using a pseudorandom sequence to access memory locations, the scheme can

achieve a high level of coverage while maintaining efficiency.

2.6 Related Work

In literature, some approaches have been proposed to remotely verify the integrity of

monitoring components within a system. However, the application of remote code

attestation to runtime monitors responsible for detecting deviations in system

behaviour during execution remains underexplored. Nonetheless, existing works

highlight the importance of establishing trust in monitoring components before relying

on their assessments.

A notable example that verifies the integrity of the monitoring component itself is a

remote attestation scheme for mobile platforms based on hardware-supported trusted

execution environments [34]. This approach separates system execution into two

isolated environments: one dedicated to security-critical functions and another for

regular applications. The monitor operates within the secure environment and

continuously observes the normal environment, measuring and recording critical

system events such as memory modifications and changes to privileged registers. Its

own integrity is verified through remote attestation using a software-based Trusted

Platform Module (TPM), also located within the secure environment. This

software-based TPM provides the same cryptographic and secure storage capabilities

as its hardware counterpart, ensuring that the monitor remains trustworthy.

Other works focus on verifying the hypervisor, which serves as a monitor by managing

virtual machines. A hypervisor, also known as a virtual machine monitor (VMM), is

software that controls the execution of multiple virtual machines on a physical system

and enforces their separation to prevent interference. To verify the hypervisor’s

integrity, some approaches [9] capture the complete system state, including memory

contents and CPU registers, and send this data to a remote verifier for analysis.

Alternatively, other methods [10] perform faster integrity checks by triggering

lightweight verification routines through secure, dedicated communication channels,

allowing a remote verifier to assess the hypervisor’s integrity.

14

2 Background & Literature Review

In their recent work [7], Colombo et al. propose a technology stack (RVsec), specifically

designed for the secure deployment of runtime monitors. Recognising that monitors

require stronger protection than ordinary software, their work addresses this need

through dedicated monitor hardening. RVsec achieves this by layering multiple security

techniques, each aligned with progressively higher levels of system compromise.

Instead of attempting to uniformly secure the entire system, RVsec strategically

focuses on protecting the monitor, which represents a smaller but critical attack

surface. An overview of the RVsec technology stack is presented in Table 2.1:

Table 2.1 RVsec Technology Stack.

Level of Compromise Observable Scenario Proposed Layer

No Compromise Normal behaviour with potential bugs Functional RVMonitors

Malicious Behaviour Abnormal performance behaviour Performance and Security RVMonitors

Non-Privileged Access Abnormal behaviour in user space Monitor Isolation and Access Control

Privileged Access Abnormal behaviour with elevated privileges Monitor Code Attestation

Monitor is Compromised System completely taken over Tamper-Evident Logging

In their case study of a quantum-safe chat application, Colombo et al. evaluate the

trade-offs of these security layers in terms of setup complexity and runtime overhead.

One of the key layers in the RVsec technology stack is monitor code attestation, which

is proposed specifically to address scenarios where an elevated malware infection

occurs, that is, the attacker achieves privilege escalation. In such a scenario, the entire

system may be under attack, but the cryptographic secrets are assumed to remain

protected. To ensure that the monitor has not been tampered with along with the rest

of the system, the paper suggests using a code attestation protocol.

The work of this dissertation builds upon this by designing and implementing a remote

code attestation mechanism to safeguard the monitoring process from an attacker with

elevated privileges.

15

3 Specification & Design

In order to meet the challenge of detecting in-memory code tampering in runtime

monitors, this chapter presents the design of a remote code attestation scheme. Based

on the foundations outlined in the previous chapter, the scheme enables a trusted

Verifier to remotely verify the state of a runtime monitor’s code. Our design takes into

account the context of the RVsec technology stack [7], which assumes the availability

of a Hardware Security Module (HSM), considers an attacker with elevated privileges

and evaluates the approach using a Java-based runtime monitor.

3.1 Design Criteria

A secure and practical remote attestation scheme must satisfy several essential design

criteria to provide strong security guarantees while remaining suitable for real-world

deployment. These criteria ensure that the attestation process is resilient against

advanced adversaries and imposes minimal disruption to normal system operations.

Based on our previous analysis of existing literature we identify the following criteria:

1. Runtime Detection: The scheme must reliably detect any tampering by verifying

the runtime code directly, rather than relying solely on static file checks. This also

includes verifying the integrity of the attestation logic itself to prevent attackers

from bypassing or disabling the attestation mechanism.

2. Freshness of Attestation: Attestation proofs must represent the current system

state and not reflect stale or outdated measurements. Freshness prevents replay

attacks, where previously valid attestation results are reused to hide malicious

activity.

3. Authenticity & Integrity of Responses: The scheme must ensure that attestation

proofs are generated by the legitimate prover and have not been tampered with

during transmission. This is typically achieved through methods of signing the

proof.

4. Minimal Trusted Computing Base (TCB): The set of system components that

must be inherently trusted for the security of the attestation process should be

minimised, as this lowers the overall attack surface.

5. Minimal Overhead: The attestation process should introduce minimal

computational overhead to avoid degrading the performance of normal system

operations. This is particularly critical for runtime monitors that must operate

continuously and in resource-constrained environments.

16

3 Specification & Design

3.2 Threat Model

To satisfy the design criteria and provide adequate defense against attackers with

elevated privileges, it is essential to formally define the adversarial capabilities and

system assumptions under which the proposed attestation scheme operates. The

following threat model outlines both the attacker’s capabilities and the assumptions

required to ensure the security of the scheme.

3.2.1 Attacker Assumptions

• Privileged Access: The attacker has elevated privileges and can modify any part

of the system’s software and can modify, inspect, or inject arbitrary code into the

target system, including tampering with the monitor and its surrounding

environment. This includes exploiting features such as reflection, runtime

compilation, and dynamic class loading to manipulate the monitor’s execution.

• No Hardware Tampering: The attacker does not have physical access or the

ability to interfere with hardware components such as the CPU, memory, or

storage.

• Network-Level Spoofing: The attacker may observe, intercept, or inject network

traffic between the Prover and Verifier. They can attempt to spoof responses by

forging attestation proofs or replaying old valid responses from a previously clean

state.

3.2.2 System Assumptions

• Secure Key Distribution: The shared secret key is securely distributed to the

Verifier and the Prover, before the system is exposed to potential compromise.

The key exchange process is protected against eavesdropping and tampering.

• Hardware Security Module: The shared secret key is stored by the Prover in a

Hardware Security Module unreachable by the attacker. The cryptographic

operations are also performed in the HSM, ensuring the key is never exposed,

and that the operations are performed securely.

• Trusted Verifier: The Verifier is a trusted entity that securely stores cryptographic

keys as well as the expected in-memory code measurements to be sent by the

Prover. It is assumed to be uncompromised and capable of performing secure

cryptographic operations.

17

3 Specification & Design

• Communication Channel: Communication between the Prover and the Verifier is

assumed to occur over an insecure channel, meaning that an attacker may

observe, intercept, modify and inject attestation proofs.

3.3 Bytecode Measurement

A core feature of our attestation scheme is the focus on measuring the in-memory

representation of the runtime monitor’s code, rather than relying on static file-based

checks, which are ineffective against attacks that occur after the system has booted.

This design choice is motivated by the threat model, which assumes that the attacker

may have privileged access to the system and could tamper with executing code after

deployment.

In execution environments such as the Java Virtual Machine (JVM), programs are

compiled into bytecode and loaded into memory to be executed. This bytecode is then

either interpreted directly or compiled into machine code at runtime to improve

performance. Regardless of the execution strategy, the original bytecode remains

accessible in memory. Unlike machine code, which is platform-specific, and may be

relocated or discarded during execution, bytecode maintains a consistent structure

making it easier to measure reliably.

For these reasons, in our attestation scheme we choose to measure bytecode instead

of machine code. By measuring the bytecode after it has been loaded into memory, the

scheme captures the actual code that is subject to execution, enabling the detection of

unauthorised modifications. This protects against attackers with elevated privileges

who may:

• Modify or replace loaded classes in memory after program startup.

• Inject new or malicious classes dynamically during execution.

3.3.1 Challenges

Although bytecode offers consistency, the JVM employs dynamic behaviours that

affect the runtime representation of bytecode in memory. Two specific challenges must

be addressed to ensure that bytecode measurement is both complete and reproducible:

• Lazy Class Loading: Classes are only loaded into memory when they are first

accessed. As a result, not all code is captured at the point of measurement.

• Dynamic Classes: Bytecode loaded into memory may differ from its on-disk

representation due to build-time metadata instrumentation applied during class

18

3 Specification & Design

loading. This can lead to discrepancies between the expected bytecode and the

actual bytecode present in memory.

3.3.2 Proposed Methodology

To address these challenges, we propose simulating a static execution environment,

allowing us to capture a complete and deterministic representation of all relevant

bytecode at measurement time. We propose to achieve this through the following

techniques:

Bytecode Normalisation

To ensure the accuracy of these measurements, it is important to account for the

variability of bytecode due to factors like debug information, line numbers, and

metadata that differ across builds or runtime configurations. Normalising the bytecode

before measurement resolves these discrepancies and ensures that the measurements

remain consistent across equivalent executions, reflecting only the monitor code itself.

Force Loading Classes

Furthermore, to ensure that the measurement accurately represents the intended

bytecode it is necessary for all required classes to be loaded into memory immediately.

This guarantees a stable static memory representation, making it possible to rely on the

measurement without concerns over runtime changes or missing classes.

3.4 Scheme Design

With the foundational requirements and threat landscape established, we now proceed

to describe the building blocks of our attestation scheme.

3.4.1 Prover-Verifier Architecture

The attestation scheme involves two principal components:

• Prover: An untrusted system executing the runtime monitor. This includes an

attestation program embedded in the same runtime environment responsible for

collecting the in-memory representation of monitor code, computing

cryptographic measurements, and sending attestation proofs to the Verifier.

• Verifier: A remote and trusted entity (acting as a server) that maintains a reference

baseline of expected code measurements and a shared secret key. The Verifier

19

3 Specification & Design

initiates attestation by issuing unpredictable challenges, verifies the authenticity

of responses, and decides whether the monitor’s code has been compromised.

Verifier Prover

HSM

Attestation

Figure 3.1 Illustration of the prover-verifier architecture, with the prover connected to

a Hardware Security Module (HSM).

3.4.2 Measurement Procedure

To measure the bytecode, we propose computing a hash of the bytecode for each class

used by the runtime monitor.

H1 = Hash(class1) (3.1)

H2 = Hash(class2) (3.2)

... (3.3)

Hn = Hash(classn) (3.4)

These per-class hashes act as compact fingerprints, capturing the precise state of the

monitor’s code. Even small modifications in the bytecode will yield different hash

values, enabling tampering detection with high sensitivity. Compared to transmitting

full bytecode, using hashes greatly reduces both data transfer and processing

requirements, making the approach practical for frequent, real-time attestations.

To generate the final attestation proof, the individual class hashes are concatenated

and hashed again to form a single global hash:

H = Hash(H1 +H2 +H3 + ...+Hn) (3.5)

Bytecode Reference

For validation, the Verifier maintains a trusted reference of the expected per-class

hashes. These are generated during setup and securely stored before deployment.

During attestation, the Verifier reconstructs the expected global hash from the

reference hashes and compares it to the attestation sent by the Prover. This is not only

20

3 Specification & Design

more efficient than comparing the full bytecode, but also allows for more flexibility as a

subset of classes can be used to perform attestation if necessary.

3.4.3 Self-Attestation

In addition to attesting the runtime monitor’s code, it is also essential to attest the

attestation mechanism code itself. This detects attackers tampering with the

attestation logic which would undermine the security guarantees of the entire system.

By incorporating a hash of the attestation bytecode along with the monitor’s bytecode

into the global hash H , we ensure that any modification of the attestation logic is

detected. This allows for detecting attempts to modify or bypass the attestation

process.

Hattest = Hash(Attestation Bytecode) (3.6)

H = Hash(H1 +H2 +H3 + ...+Hn +Hattest) (3.7)

3.4.4 Challenge-Response Protocol

A central feature of our attestation scheme is the use of a challenge-response protocol

to ensure the freshness of attestation proofs. In this design, the Verifier initiates each

attestation by issuing a unique cryptographic challenge, in the form of a random nonce.

The Prover must incorporate this challenge into the attestation computation to return a

proof that is both bound to the current bytecode state and authenticated.

H = Hash(nonce+H1 +H2 +H3 + ...+Hn) (3.8)

The challenge-response protocol serves the following key purposes:

1. Replay Attack Prevention: A unique, unpredictable challenge ensures that proofs

are valid only for a specific session. Captured proofs cannot be reused, as they

won’t match future challenges.

2. Unpredictability: Since the challenge is generated by the Verifier and unknown to

the Prover in advance, responses cannot be precomputed.

3. On-Demand Verification: The Verifier can initiate attestation at any time,

supporting flexible intervals and adapting to shifting security needs.

21

3 Specification & Design

3.4.5 Attestation Authentication

To ensure the authenticity and integrity of attestation proofs, it is essential to

incorporate a mechanism for attestation authentication. This mechanism prevents

attackers from forging or tampering with the attestation response, ensuring that the

Verifier can trust the received proof. To achieve this authentication, we employ a

Message Authentication Code (MAC), which provides cryptographic assurance that the

attestation response has not been altered and that it originates from the legitimate

Prover. The MAC is computed using the shared secret key and global bytecode hash.

This approach ensures the following:

1. Untampered Proofs: The MAC ensures that the attestation data remains

unaltered during transmission. Any modification to the attestation response will

result in a failed MAC verification, signaling potential tampering.

2. Authentication: The MAC also serves as proof of the origin of the response. Only

the Prover in possession of the shared secret key can generate a valid MAC,

ensuring that the response is genuinely from the legitimate Prover and not a

malicious entity.

Hash-based Message Authentication Code (HMAC)

To compute the MAC, we use the Hash-Based Message Authentication Code (HMAC)

[32], a widely adopted method for generating message authentication codes. HMAC

combines a cryptographic hash function with a secret key, offering strong resistance to

forgery. It was chosen for its wide support across platforms and its practicality, as it

does not require specialised cryptographic primitives. The HMAC is computed as

follows:

HMAC(K,M) = Hash((K ⊕ opad) + Hash((K ⊕ ipad) + M)) (3.9)

where (i) K is the shared secret key stored in the HSM; (ii)M is the message, in this

case the global hash of the monitor’s bytecode; (iii) opad and ipad are the outer and

inner padding constants, respectively; (iv) + denotes concatenation.

The computed HMAC is then sent along with the global hash as part of the attestation

response to the Verifier. The Verifier can then verify the authenticity of the response by

recomputing the HMAC using the shared secret key and comparing it to the received

HMAC. If they match, the Verifier can trust that the attestation response is genuine and

has not been tampered with.

22

3 Specification & Design

3.4.6 Response Time Bounds

To prevent attackers with elevated privileges from exploiting additional response time

to tamper with the monitor or forge a valid proof, the Prover is required to respond

within a bounded time window. Failure to do so results in the Verifier rejecting the

attestation. These timing bounds serve two key purposes:

1. Restrict Tampering Window: An upper bound limits the time available to an

attacker for memory manipulation or constructing a forged proof after receiving

the challenge.

2. Precomputation & Replay Detection: Optionally, a minimum bound can help

detect unrealistically fast responses, which may indicate a replayed or

precomputed reply rather than genuine execution.

3.5 Attestation Protocol

Having discussed the core components of the attestation scheme we now bring these

elements together into a complete protocol. The following is a step-by-step overview

the proposed attestation protocol:

1. Challenge Generation

The Verifier sends a random challenge c to the Prover (runtime monitor).

2. Authentication Handshake (Skip if not the first challenge)

(a) The Prover, computes the HMACM of the challenge using the shared secret

key and sends it back to the Verifier.

(b) The Verifier receives the HMACM and computes the HMACM ′ of the

challenge using the same key.

(c) IfM andM ′ match, the Verifier can trust that it is communicating with the

correct Prover.

3. Bytecode Measurement

For each class loaded in the Prover’s memory, the following steps are performed:

(a) The bytecode is normalised by removing dynamic parts.

(b) A hash of the current bytecode is computed.

(c) The hash is stored in a list of hashes.

23

3 Specification & Design

4. Global Hash Computation

Let the Prover’s bytecode hashes be represented as H1, H2, ..., Hn. The global

hash H is computed by concatenating the bytecode hashes and challenge c:

H = Hash(c+H1 +H2 + ...+Hn) (3.10)

5. HMAC Generation

The Prover computes the HMAC of the global hashH using the shared secret key.

6. Response

The Prover sends the computed global hash H along with the corresponding

HMAC to the Verifier. This response serves as cryptographic proof of the Prover’s

current bytecode state and ensures that the response has not been forged or

altered.

7. Verification

Upon receiving the response, the Verifier performs the following steps:

(a) The response time is checked against the upper and lower bounds. If the

response time is outside the expected range, the Verifier concludes that the

Prover is compromised.

(b) The expected global hash H ′ is computed by using the same challenge c to

seed its pseudorandom number generator and traverse the expected

bytecode hashes in the same order as the Prover.

(c) The received hash H is checked against the expected value H ′. IfH 6= H ′,

the verifier concludes that the Prover’s bytecode state has been modified or

tampered with.

(d) The authenticity of the response is validated by recomputing the HMAC

using the shared secret keyK and comparing it with the received HMAC. If

the HMACs do not match, the verifier concludes that the response is invalid

or has been forged.

If both the global hash and the HMAC verification succeed, the verifier concludes

that the runtime monitor is in a trusted state and has not been tampered with.

To validate the feasibility and effectiveness of the proposed attestation scheme,

we now turn to its implementation, detailing how each component was realised

in a working prototype.

24

4 Implementation

This chapter describes an implementation of the remote code attestation scheme,

detailing how the theoretical design was translated into a working system. The

implementation consists of two main components: the Prover, implemented as a Java

Agent responsible for making runtime bytecode measurements and generating

attestation proofs, and the Verifier, implemented as a standalone Python server that

issues challenges and validates responses.

4.1 Runtime Monitor

The runtime monitor employed in this work is based on the Java implementation

presented in the RVsec paper [7]. In that work, Colombo et al. demonstrate the

deployment of runtime monitors using a quantum-safe chat application as a case study.

This chat application serves as the System Under Scrutiny (SuS), offering a realistic

environment for evaluating the effectiveness of runtime security mechanisms in

detecting abnormal or malicious behaviours. Their study focuses on a high-stakes

setting involving a group chat application developed through a NATO-funded project

[35], which implements a quantum-future group key establishment (GAKE) protocol.

The monitor itself is generated using LARVA [36], a tool for specifying formal

behavioural properties over Java programs using symbolic timed automata. By

integrating our remote attestation mechanism into this case study, we demonstrate its

practicality and effectiveness in securing runtime monitors deployed in real-world,

security-sensitive applications such as post-quantum secure group communication

systems.

4.2 Prover

For our attestation scheme, the Prover is implemented as a Java Agent running

alongside the monitor in the same runtime environment. This enables access to the

monitor’s in-memory code, ensuring measurements reflect its runtime state. While the

monitor enforces behavioural correctness, the Prover collects bytecode measurements

and generates attestation proofs in response to verifier-issued challenges.

4.2.1 Java Agent

A Java Agent is a special type of Java program that can be attached to the Java Virtual

Machine (JVM) at startup or during runtime. Unlike regular Java applications, agents

25

4 Implementation

operate at the JVM level and have privileged access to the internals of the running

environment. Java Agents have the ability to monitor and manipulate the execution of

Java applications, including intercepting method calls, modifying bytecode, and

accessing runtime data structures. Java Agents make use of the

java.lang.instrument API, which provides mechanisms for dynamically observing
and modifying Java applications during execution. Through this API, agents can register

a ClassFileTransformer, a component that intercepts and optionally modifies the
bytecode of classes before they are fully loaded by the JVM. This enables the agent to

analyse or alter class behaviour during the class loading process.

4.2.2 Class Retransformation

In addition to intercepting class loading, the java.lang.instrument API also provides
support for class retransformation, allowing agents to request that classes which have

already been loaded by the JVM be reprocessed at runtime. This capability is

particularly useful for scenarios where it is necessary to obtain the latest in-memory

representation of classes. Class retransformation is not universally supported across all

JVM implementations, but instead requires explicit support from the underlying virtual

machine. In this implementation, we utilise the IBM Semeru Runtime Open Edition

with the OpenJ9 JVM, which provides robust support for class retransformation. This

feature is crucial for accurately measuring the in-memory state of the runtime

monitor’s code.

4.2.3 Bytecode Collection

The Prover is implemented as a Java Agent using the java.lang.instrument API, which
allows it to intercept and manipulate bytecode at runtime. This is accomplished by

registering a custom ClassFileTransformer, a component that the JVM automatically

invokes whenever a class is about to be loaded or retransformed. In our case, we

design the custom ClassFileTransformer to: (i) store a copy of the raw bytecode of

each intercepted class; and (ii) retain a reference to the corresponding Class object.
This retained reference enables the Java Agent to later perform class retransformation.

4.2.4 Static Bytecode Representation

For accurate and comparable bytecode measurements, it is essential that the bytecode

representation being attested is static, that is, it is stable, complete, and free from

variations. In Java, there are two features that need to be addressed to achieve this:

lazy loading and dynamic classes.

26

4 Implementation

Lazy Loading

The JVM loads classes lazily, meaning that a class is only loaded into memory when it is

first referenced during execution. This behaviour is efficient but poses a problem for

runtime attestation, as not all classes may be loaded at the time of measurement. To

address this, the Prover agent must proactively force the loading of the runtime

monitor classes. This is achieved by maintaining a predefined list of classes that are

essential to the monitor’s functionality. These classes are then loaded explicitly using

Class.forName(). This ensures that their bytecode is resident in memory before any
attestation measurements are performed.

Dynamic Classes

When a Java class is loaded, its bytecode may be modified by the JVM to include

additional metadata, potentially causing discrepancies between the expected and

actual bytecode in memory. To ensure that measurements reflect only the functional

behaviour of the monitored code, non-functional metadata must be removed prior to

hashing. Debug information, which varies across build environments but does not

affect execution, can otherwise cause unnecessary hash mismatches and reduce the

reliability of attestation. In our implementation, we make use of the ASM bytecode

manipulation framework to strip non-essential debug information from the class

bytecode and normalise it. ASM provides a low-level API for reading, modifying, and

writing Java bytecode efficiently. Specifically, the normalisation process removes: (i)

line number tables, which are used for debugging; and (ii) local variable tables, which

provide information about local variables in methods.

4.2.5 Bytecode Measurement

The bytecode measurement process consists of the following steps:

1. Bytcode Collection: The bytecode of all loaded classes is collected and stored.

2. Bytecode Normalisation: The collected bytecode is normalised by removing

dynamic data using the ASM framework. This ensures that the bytecode is in a

consistent state for hashing.

3. SHA-256 Computation: A SHA-256 hash is computed over each class’ bytecode.

The hashes of all classes are then concatenated with the nonce to form a single

string, which is then hashed again to produce the global bytecode hash H.

H = SHA256(nonce+SHA256(class1)+SHA256(class2)+ . . .+SHA256(classn))

(4.1)

27

4 Implementation

Hashing classes individually reduces storage needs and speeds up verification, as

the Verifier compares fixed-size hashes instead of full bytecode. It also adds

flexibility, allowing selective validation when full attestation is not required.

4.2.6 Attestation Authentication

To ensure that attestation responses are both authentic and tamper-proof, the Prover

computes a Message Authentication Code (MAC) over the final measurement hash

before sending it to the Verifier. This cryptographic authentication step ensures that

only a legitimate Prover, one in possession of the shared secret key, can produce a valid

response. In our implementation, the MAC is constructed using HMAC-SHA256, an

algorithm that combines a cryptographic hash function (SHA-256) with a secret key.

This was chosen for its maturity as a well-studied and widely adopted standard in

cryptographic applications, providing a strong guarantee of authenticity and integrity.

4.2.7 Sending Proof to the Verifier

Once the attestation proof is generated and authenticated, it is transmitted to the

Verifier over a TCP socket connection initiated by the Prover. Buffered streams are used

to ensure efficient and reliable data exchange. The Prover waits for a challenge (nonce),

performs the measurement, computes the final hash, and generates the HMAC as

described previously. To ensure safe transmission, the HMAC, which is a fixed-length

binary value that may contain non-printable characters, is Base64-encoded. The final

proof, comprising the hex-encoded measurement hash and the Base64-encoded

HMAC, is concatenated using a colon delimiter and sent to the Verifier.

4.3 Verifier

With the attestation proof constructed and transmitted by the Prover, the role of the

Verifier is to independently validate the received response. Python is used to

implement the Verifier due to its simplicity and wide support for networking and

cryptographic operations, which allow for a straightforward and reliable

implementation. The Verifier is responsible for issuing unpredictable challenges and

validating incoming proofs to detect any signs of tampering.

4.3.1 Reference Hashes

To perform validation, the Verifier requires a trusted reference of expected bytecode

hashes. These reference hashes are computed during a secure initialisation phase of

28

4 Implementation

the Prover and saved in a JSON file. Upon startup, the Verifier loads this file into

memory to use as the basis for comparison during attestation.

4.3.2 Connection Handling

With the reference hashes in place, the Verifier then listens to one incoming connection

from the Prover. It operates on a predefined TCP port using the socket library, which
provides a low-level interface for network communication. Upon receiving a

connection request, the Verifier accepts it and spawns a new thread to handle it. The

connection remains active until the Prover terminates or the Verifier explicitly closes it.

4.3.3 Challenge Issuance

The Verifier initiates attestation rounds by issuing unique challenges to the Prover.

Challenges are generated as 16-byte hexadecimal nonces using the secrets library,
which provides a secure way to generate random numbers suitable for cryptographic

use. The nonce is then transmitted to the Prover over a TCP connection using a

buffered output stream, which allows reliable writing of data to the socket.

4.3.4 Response Time Bounds

As part of each attestation round, the Verifier also monitors how long the Prover takes

to respond. Response time is measured using time.perf_counter(), which offers
high-resolution timing suitable for short-duration measurements. Abnormally fast

responses may suggest the Prover is bypassing the measurement process or replaying

precomputed values. Conversely, unusually slow responses may indicate the attacker is

tampering with the system and delaying responses to avoid detection. In either case,

the Verifier uses these timing observations to flag or reject suspicious activity

accordingly.

4.3.5 Proof Verification

Upon receiving the attestation proof from the Prover, the Verifier reconstructs the

expected global hash using the received nonce and trusted reference hashes, following

the same procedure as the Prover. It then decodes the received HMAC from Base64

and uses the hmac library, along with the shared secret key and expected hash, to
compute a local HMAC. This computation employs SHA-256 as the underlying hash

function, as provided by the hashlib library. If the computed HMAC matches the

decoded one, the proof is accepted; otherwise, it is rejected as a sign of compromise.

29

5 Evaluation & Optimisation

Having completed the implementation of our remote code attestation scheme, we now

evaluate its effectiveness by validating its security guarantees through targeted testing

and measuring the performance.

5.1 Evaluation Setup

The evaluation was performed in a local test environment comprising: (i) a

Python-based Verifier server running on localhost, (ii) a Java-based Prover

implemented as a Java Agent integrated with the runtime monitor, (iii) an attacker client

written in Python to simulate network-level attacks, and (iv) a tampering agent, which

is a Java Agent, used to simulate in-memory code tampering.

5.2 Security Evaluation

To demonstrate the effectiveness of our remote code attestation mechanism, we

identify two main categories of attacks: network-level attacks and in-memory code

tampering. Network-level attacks test the Verifier’s ability to detect forged or

manipulated proofs during communication with the Prover. In contrast, in-memory

code tampering tests whether the system can detect unauthorised modifications made

directly to the monitor’s bytecode during execution.

5.2.1 Network-Level Attacks

The network-level attacks are simulated using a custom Python client that interacts

with the Verifier and can be configured to perform the following attack scenarios:

1. Replay Attack: A previously valid proof is resent, violating freshness and

potentially the minimum timing bound.

2. Precomputation: A proof is computed in advance and reused, violating freshness

and potentially the minimum timing bound.

3. Tampered HMAC: The HMAC of a valid proof is altered, violating authenticity

and integrity.

4. Delaying Responses: The proof is delayed to allow time for tampering, violating

the defined timing bounds.

30

5 Evaluation & Optimisation

Results

Table 5.1 summarises the outcomes of the tested network-level attacks. The table

covers the key network-level attacks that could compromise the integrity, freshness, or

authenticity of the attestation protocol over an untrusted channel assuming the

attacker cannot access the shared secret.

Table 5.1 Attack Scenarios and Verifier Outcomes

Attack Type Description Verifier Outcome

Replay Attack An old proof is sent to the Verifier Proof Rejected

Precomputation Precomputed proof is sent to the Verifier Proof Rejected

Tampered HMAC Invalid HMAC is sent to the Verifier Proof Rejected

Delaying Responses Proof response time exceeds bounds Proof Rejected

5.2.2 In-Memory Code Tampering Attacks

Unlike network-level attacks that target the communication channel, in-memory

tampering directly modifies the runtime state of the monitor. To evaluate the

attestation mechanism’s ability to detect such modifications, we developed a dedicated

tampering program in the form of a Java Agent using the java.lang.instrument API
and ASM framework. This agent supports five distinct types of tampering attacks:

1. Safe Tampering: Aminor functional change is made by modifying the operand of

a bipush instruction in larva._cls_chatappdemo0 from 13 to 14. This

adjustment does not break the class structure or cause observable changes in

system behaviour during evaluation, serving as an example of non-crashing

tampering.

2. Attestation Logic Tampering: To simulate a minimal modification, we inject a NOP
instruction into the premain() method of the attestation logic. Although a NOP
does not alter program behaviour, it changes the bytecode, simulating subtle

modifications to the attestation logic itself that should still be detected by the

Verifier through self-attestation.

3. Monitor Disabling Tampering: The trigger() method in the runtime monitor class

(olparser.Parser) is forcibly altered to return immediately. This method normally

invokes the monitor’s logic to process runtime events, so bypassing it silences the

monitor and prevents violation detection. This test simulates an attacker disabling

the monitor and evaluates whether attestation detects this manipulation.

31

5 Evaluation & Optimisation

4. Class Breaking Tampering: The agent flips a specific byte in one of the loaded

classes (larva._cls_chatappdemo0). This creates a deliberately malformed class
file, simulating a broken class.

5. Extra Class Loading: A tampering class is loaded into memory. This scenario

simulates an attacker injecting a malicious class, which could potentially interfere

with the monitor’s operation.

Results

Table 5.2 In-Memory Tampering Scenarios and Verifier Outcomes

Tampering Mode Description Verifier Outcome

Safe Tampering Minimal tampering in runtime monitor Proof Rejected

Attestation Logic Tampering Minimal tampering in attestation logic Proof Rejected

Monitor Disabling Tampering Major tampering disabling the runtime monitor Proof Rejected

Class Breaking Tampering Byte flip causing a malformed class Proof Rejected

Extra Class Loading Unexpected classes loaded in memory Proof Rejected

All in-memory attacks were successfully detected by the Verifier. Even subtle changes,

like Safe Tampering, triggered attestation failure. These results confirm that the

attestation scheme effectively detects tampering.

5.3 Performance Evaluation

Following the security evaluation, we assessed the runtime cost of our attestation

mechanism by measuring the CPU usage of the JVM process, which hosts both the

runtime monitor and the attestation logic. CPU usage refers to the proportion of CPU

time that the process requires to execute, expressed as a percentage of total capacity,

with 100% indicating full utilisation of a single core. To do so, we employed pidstat, a
standard Linux tool for per-process CPU usage monitoring. The monitor was run with

and without attestation enabled, and CPU usage was recorded every second for 15

seconds in each run. To ensure reliability, this process was repeated four times and the

results averaged. Table 5.3 summarises the measured CPU usage, reported as

single-core usage and total usage across 16 cores.

Table 5.3 Average Performance Comparison

Configuration (4 runs) Single-core CPU Usage Total CPU Usage (16 cores)

Monitor 7.99% 0.50%

Monitor + Attestation 82.12% 5.13%

32

5 Evaluation & Optimisation

The results show that enabling attestation significantly increases single-core CPU

usage, rising from 7.99% to 82.12%. However, the overhead remains manageable in

practice, particularly on modern multi-core systems.

5.4 Optimisation (Pseudorandom Hash Traversal)

Measuring the complete in-memory representation of all classes at each attestation

interval ensures strong integrity guarantees but incurs significant computational

overhead. This can degrade system performance, particularly in environments with

many loaded classes and frequent attestation requests. To address this, we propose a

pseudorandom hash traversal strategy, inspired by the pseudorandom memory access

pattern used in the SWATT attestation scheme. Instead of exhaustively measuring

every class, the Prover samples a pseudorandom subset, balancing overhead and

detection guarantees.

Measurement Procedure

Given a set of n loaded classes, the Prover selects a subset of k classes to measure,

where k < n. The selection process is performed as follows:

1. Using a PRNG, generate a sequence S = [s1, s2, ..., sk] of unique indices.

2. The sequence S is then used to select the corresponding classes and compute

their normalised bytecode hashes.

3. Concatenate the resulting hashes and compute a global hash to be sent to the

Verifier as part of the attestation proof. In this case, the global hash is computed

as: H = Hash(Hs1 +Hs2 + ...+Hsk), where Hsi is the hash of the ith selected

class in the pseudorandom sequence.

Challenge-Dependent Traversal

To ensure unpredictability, freshness of the attestation process, and effective coverage

of the monitor’s code over time, the pseudorandom number generator is seeded using

the unique challenge (nonce) provided by the Verifier. This guarantees that (i) the

Verifier can deterministically reproduce the class sampling order based on the same

challenge, enabling independent verification of the attestation response; (ii) the

attacker cannot predict in advance which classes will be selected for measurement, as

the sampling is derived from an unpredictable, challenge-dependent seed; and (iii) each

attestation round samples a different subset of classes, ensuring that over multiple

attestations, the entire bytecode is eventually covered.

33

5 Evaluation & Optimisation

5.4.1 Implementation

To implement bytecode measurement using the pseudorandom hash traversal

optimisation, we generate a pseudorandom sequence of class indices using a Linear

Congruential Generator (LCG) [32] seeded with the Verifier’s challenge. This ensures a

unique selection for each attestation round, enabling probabilistic coverage while

reducing performance overhead. The LCG, defined by the recurrence

Xn+1 = (a ·Xn + c) mod m, produces a deterministic pseudorandom sequence. With

well-chosen parameters and sufficiently unpredictable challenges, this approach

approximates uniform coverage over the indices of classes loaded in memory.

5.4.2 Evaluation

To evaluate the performance impact of our optimization, we again measured CPU

usage using the same approach as described previously, considering four

configurations: sampling 25%, 50%, 75%, and 100% of the loaded classes. In our tests,

this amounted to 330 loaded classes.

Table 5.4 Effect of Class Subset Size on CPU Usage and Attestations Required

Subset Single-core CPU Usage Total CPU Usage (16 cores) Attestations Required

25% (83) 52.50% 3.28% 25

50% (165) 77.32% 4.83% 13

75% (248) 81.32% 5.08% 9

100% (330) 95.57% 5.97% 1

Table 5.4 shows that sampling fewer classes per attestation significantly reduces CPU

usage, especially below a subset of 50%. However, this approach takes longer to fully

cover the in-memory bytecode across multiple attestations. To estimate the expected

attestations needed to sample all loaded classes at least once, we rely on the Coupon

Collector’s Problem, as described in Section 2.5, which states that the expected total

number of samples needed to collect all n distinct classes can be approximated by

E(n) ≈ n · lnn+ γn, where γ ≈ 0.5772.

For 330 classes, this gives about 2104 total samples. Each round samples k unique

classes, so the expected number of attestations is roughly 2104
k
. This corresponds to

about 25 attestations for a 25% subset (k = 83), 13 for 50% (k = 165), and 9 for 75%

(k = 248). Overall, the results show a clear trade-off: smaller subsets reduce

per-attestation CPU usage but require more attestations for full coverage, while larger

subsets increase per-attestation overhead but achieve faster coverage. The 100%

subset naturally incurs the highest CPU usage and, as expected, exceeds that of a

traditional full attestation due to the overhead of pseudorandom traversal.

34

6 Conclusion & Future Work

6.1 Conclusion

In this work, we investigated the feasibility and effectiveness of using remote code

attestation to protect runtime monitors from in-memory tampering. While runtime

monitors are valuable for detecting anomalous system behaviour, they remain

vulnerable to compromise in adversarial settings where attackers may have sufficient

privileges to alter or disable them during execution.

To address this, we designed and implemented a remote code attestation mechanism

that enables a trusted verifier to cryptographically validate the integrity of a runtime

monitor’s in-memory code. The scheme combines bytecode hashing, HMAC

authentication, and a challenge–response protocol to ensure that even minor

tampering triggers attestation failure, and was implemented for a Java-based monitor.

The attestation scheme was evaluated against a range of simulated attack scenarios,

including network-level manipulations and direct in-memory tampering. All tested

attacks, including subtle modifications, were successfully detected by the verifier,

demonstrating the robustness of the approach in adversarial conditions.

6.2 Future Work

While the results are promising, several avenues exist for further refinement:

• Further Optimisation: Future work could explore algorithmic refinements such as

more efficient sampling strategies to reduce computational overhead, improving

practicality for real-time or embedded systems.

• Tamper Recovery: Beyond detection, future research could focus on

incorporating active tamper response mechanisms. This includes patching of

compromised code or triggering system alerts to mitigate attacks more

effectively.

In summary, this work demonstrates that remote code attestation is a viable and

effective technique for detecting tampering in runtime monitors. With further

optimisation and development, it can form a critical layer in defending against

in-memory attacks.

35

References

[1] R. A. Ashraf, R. Gioiosa, G. Kestor, and R. F. DeMara, “Exploring the effect of

compiler optimizations on the reliability of hpc applications,” in 2017 IEEE

International Parallel and Distributed Processing SymposiumWorkshops (IPDPSW),

IEEE, 2017, pp. 1274–1283.

[2] L. Binosi, G. Barzasi, M. Carminati, S. Zanero, and M. Polino, “The illusion of

randomness: An empirical analysis of address space layout randomization

implementations,” in Proc. 2024 ACM SIGSAC Conf. on Computer and

Communications Security, 2024, pp. 1360–1374.

[3] C. Colombo and G. J. Pace, Runtime Verification: A Hands-On Approach in Java.

Cham: Springer, 2022, ISBN: 978-3-031-09268-8. DOI:

10.1007/978-3-031-09268-8.

[4] C. Colombo, G. J. Pace, and G. Schneider, “Runtime verification: Passing on the

baton,” in Formal Methods in Outer Space: Essays Dedicated to Klaus Havelund on

the Occasion of His 65th Birthday, E. Bartocci, Y. Falcone, and M. Leucker, Eds.,

Cham: Springer, 2021, pp. 89–107, ISBN: 978-3-030-87348-6. DOI:

10.1007/978-3-030-87348-6_5.

[5] A. Francalanza et al., “A foundation for runtime monitoring,” in Proc. Int. Conf.

Runtime Verification, Springer, 2017, pp. 8–29.

[6] E. Bartocci, Y. Falcone, A. Francalanza, and G. Reger, “Introduction to runtime

verification,” in Lectures on Runtime Verification: Introductory and Advanced Topics,

Springer, 2018, pp. 1–33.

[7] C. Colombo, A. Curmi, and R. Abela, “Rvsec: Towards a comprehensive

technology stack for secure deployment of software monitors,” in Proc. 7th ACM

Int. Workshop on Verification and Monitoring at Runtime Execution (VORTEX),

Vienna, Austria: Association for Computing Machinery, 2024, pp. 13–18. DOI:

10.1145/3679008.3685542.

[8] H. Hui, K. McLaughlin, F. Siddiqui, S. Sezer, S. Y. Tasdemir, and B. Sonigara, “A

runtime security monitoring architecture for embedded hypervisors,” in Proc.

2023 IEEE 36th Int. System-on-Chip Conf. (SOCC), IEEE, 2023, pp. 1–6.

[9] F. Zhang, J. Wang, K. Sun, and A. Stavrou, “Hypercheck: A hardware-assisted

integrity monitor,” IEEE Transactions on Dependable and Secure Computing, vol. 11,

no. 4, pp. 332–344, 2013.

36

https://doi.org/10.1007/978-3-031-09268-8
https://doi.org/10.1007/978-3-030-87348-6_5
https://doi.org/10.1145/3679008.3685542

6 REFERENCES

[10] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. C. Skalsky, “Hypersentry:

Enabling stealthy in-context measurement of hypervisor integrity,” in Proc. 17th

ACM Conf. Computer and Communications Security (CCS), 2010, pp. 38–49.

[11] B. Gassend, G. E. Suh, D. Clarke, M. V. Dijk, and S. Devadas, “Caches and hash

trees for efficient memory integrity verification,” in Proc. 9th Int. Symp.

High-Performance Computer Architecture (HPCA), IEEE, 2003, pp. 295–306.

[12] T. Wehbe, V. Mooney, and D. Keezer, “Hardware-based run-time code integrity

in embedded devices,” Cryptography, vol. 2, no. 3, 2018, ISSN: 2410-387X. DOI:

10.3390/cryptography2030020. [Online]. Available:
https://www.mdpi.com/2410-387X/2/3/20.

[13] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas, “Efficient memory

integrity verification and encryption for secure processors,” in Proc. 36th Annu.

IEEE/ACM Int. Symp. Microarchitecture (MICRO), IEEE Computer Society, 2003,

p. 339.

[14] J. A. Pendergrass and K. N. McGill, “Lkim: The linux kernel integrity measurer,”

Johns Hopkins APL Technical Digest, vol. 32, no. 2, pp. 509–516, 2013.

[15] S. E. R. J. Surminski, “Securing embedded devices with remote attestation,” Ph.D.

dissertation, University of Duisburg-Essen, Jun. 2024. DOI:

10.17185/duepublico/82079.

[16] A. Seshadri, A. Perrig, L. V. Doorn, and P. Khosla, “Swatt: Software-based

attestation for embedded devices,” in Proc. IEEE Symp. Security and Privacy, IEEE,

2004, pp. 272–282.

[17] J. Dietrich, T. White, B. Hassanshahi, and P. Krishnan, Levels of binary equivalence

for the comparison of binaries from alternative builds, arXiv preprint

arXiv:2410.08427, 2025. [Online]. Available:

https://arxiv.org/abs/2410.08427.

[18] V. Haldar, D. Chandra, and M. Franz, “Semantic remote attestation: A virtual

machine directed approach to trusted computing,” in Proc. 3rd Conf. Virtual

Machine Research and Technology Symp. (VM’04), San Jose, California, USA:

USENIX Association, 2004, p. 3.

[19] S. Mei, Z. Wang, Y. Cheng, J. Ren, J. Wu, and J. Zhou, “Trusted bytecode virtual

machine module: A novel method for dynamic remote attestation in cloud

computing,” International Journal of Computational Intelligence Systems, vol. 5,

no. 5, pp. 924–932, 2012, ISSN: 1875-6883. DOI:

10.1080/18756891.2012.733231.

37

https://doi.org/10.3390/cryptography2030020
https://www.mdpi.com/2410-387X/2/3/20
https://doi.org/10.17185/duepublico/82079
https://arxiv.org/abs/2410.08427
https://doi.org/10.1080/18756891.2012.733231

6 REFERENCES

[20] D. Mohindra, Env04-j. do not disable bytecode verification, SEI CERT Oracle

Coding Standard for Java, 2008. [Online]. Available:

https://wiki.sei.cmu.edu/confluence/x/0jdGBQ.

[21] X. Leroy, “Java bytecode verification: Algorithms and formalizations,” Journal of

Automated Reasoning, vol. 30, no. 3, pp. 235–269, 2003.

[22] A. Sharma, M. Wittlinger, B. Baudry, and M. Monperrus, “Sbom. exe: Countering

dynamic code injection based on software bill of materials in java,” arXiv preprint

arXiv:2407.00246, 2024.

[23] A. S. Banks, M. Kisiel, and P. Korsholm, “Remote attestation: A literature review,”

arXiv preprint arXiv:2105.02466, 2021.

[24] M. Ammar, B. Crispo, and G. Tsudik, “Simple: A remote attestation approach for

resource-constrained iot devices,” in Proc. 11th ACM/IEEE Int. Conf.

Cyber-Physical Systems (ICCPS), IEEE, 2020, pp. 247–258.

[25] S. F. J. J. Ankergård, E. Dushku, and N. Dragoni, “State-of-the-art software-based

remote attestation: Opportunities and open issues for internet of things,”

Sensors, vol. 21, no. 5, 2021, ISSN: 1424-8220. DOI: 10.3390/s21051598.
[Online]. Available: https://www.mdpi.com/1424-8220/21/5/1598.

[26] M. Sommerhalder, “Hardware security module,” in Trends in Data Protection and

Encryption Technologies, Springer, 2023, pp. 83–87.

[27] A. Tomlinson, “Introduction to the TPM,” in Smart Cards, Tokens, Security and

Applications, Springer, 2017, pp. 173–191.

[28] I. D. O. Nunes, K. Eldefrawy, N. Rattanavipanon, M. Steiner, and G. Tsudik,

“VRASED: A verified hardware/software co-design for remote attestation,” in

Proc. 28th USENIX Security Symp. (USENIX Security 19), 2019, pp. 1429–1446.

[29] A. Ibrahim, A.-R. Sadeghi, and S. Zeitouni, “SeED: Secure non-interactive

attestation for embedded devices,” in Proc. 10th ACM Conf. Security and Privacy in

Wireless and Mobile Networks, 2017, pp. 64–74.

[30] X. Carpent, N. Rattanavipanon, and G. Tsudik, “Remote attestation of IoT devices

via SMARM: Shuffled measurements against roving malware,” in Proc. IEEE Int.

Symp. Hardware Oriented Security and Trust (HOST), IEEE, 2018, pp. 9–16.

[31] X. Carpent, G. Tsudik, and N. Rattanavipanon, “ERASMUS: Efficient remote

attestation via self-measurement for unattended settings,” in Proc. Design,

Automation and Test in Europe Conf. and Exhibition (DATE), IEEE, 2018,

pp. 1191–1194.

[32] C. Paar and J. Pelz, Understanding Cryptography: A Textbook for Students and

Practitioners, 1st. Springer, 2010, ISBN: 978-3642041006.

38

https://wiki.sei.cmu.edu/confluence/x/0jdGBQ
https://doi.org/10.3390/s21051598
https://www.mdpi.com/1424-8220/21/5/1598

REFERENCES

[33] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. V. Doorn, and P. Khosla, “Pioneer:

Verifying code integrity and enforcing untampered code execution on legacy

systems,” in Proc. 20th ACM Symp. Operating Systems Principles, 2005, pp. 1–16.

[34] Z. Wang, Y. Zhuang, and Z. Yan, “TZ-MRAS: A remote attestation scheme for the

mobile terminal based on ARM TrustZone,” Security and Communication Networks,

vol. 2020, no. 1, p. 1 756130, 2020. DOI: 10.1155/2020/1756130. [Online].
Available:

https://onlinelibrary.wiley.com/doi/abs/10.1155/2020/1756130.

[35] R. Abela et al., “Secure implementation of a quantum-future GAKE protocol,” in

Proc. Int. Workshop Security and Trust Management, Springer, 2021, pp. 103–121.

[36] C. Colombo and G. J. Pace, “Runtime verification using larva,” in RV-CuBES 2017.

An International Workshop on Competitions, Usability, Benchmarks, Evaluation, and

Standardisation for Runtime Verification Tools, ser. Kalpa Publications in

Computing, vol. 3, 2017, pp. 55–63. DOI: 10.29007/n7td.

39

https://doi.org/10.1155/2020/1756130
https://onlinelibrary.wiley.com/doi/abs/10.1155/2020/1756130
https://doi.org/10.29007/n7td

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Glossary of Symbols
	Introduction
	Motivation
	Problem Overview
	Proposed Solution
	Aims and Objectives

	Contributions

	Background & Literature Review
	Runtime Monitors
	Security

	Measuring In-Memory Code
	Measurement Methodologies
	Bytecode

	Remote Attestation
	Hardware-Based Attestation
	Software-Based Attestation
	Hybrid Attestation

	Attestation Schemes
	Cryptographic Primitives
	Challenge-Response Protocol
	SWATT Attestation Scheme

	Coupon Collector's Problem
	Problem Description
	Calculating the expectation
	Applicability

	Related Work

	Specification & Design
	Design Criteria
	Threat Model
	Attacker Assumptions
	System Assumptions

	Bytecode Measurement
	Challenges
	Proposed Methodology

	Scheme Design
	Prover-Verifier Architecture
	Measurement Procedure
	Self-Attestation
	Challenge-Response Protocol
	Attestation Authentication
	Response Time Bounds

	Attestation Protocol

	Implementation
	Runtime Monitor
	Prover
	Java Agent
	Class Retransformation
	Bytecode Collection
	Static Bytecode Representation
	Bytecode Measurement
	Attestation Authentication
	Sending Proof to the Verifier

	Verifier
	Reference Hashes
	Connection Handling
	Challenge Issuance
	Response Time Bounds
	Proof Verification

	Evaluation & Optimisation
	Evaluation Setup
	Security Evaluation
	Network-Level Attacks
	In-Memory Code Tampering Attacks

	Performance Evaluation
	Optimisation (Pseudorandom Hash Traversal)
	Implementation
	Evaluation

	Conclusion & Future Work
	Conclusion
	Future Work

