Code Attestation for Monitor
Compromise Detection

Matthew Mifsud

Supervisor: Prof. Christian Colombo

June 2025

Submitted in partial fulfilment of the requirements
for the degree of B.Sc. (Hons) (Computing Science).

L-Universita ta' Malta
Faculty of Information &
Communication Technology

Abstract

Runtime monitors are programs that observe a system'’s execution to detect deviations
from expected behaviour. This makes them valuable in security contexts, where they
can be used for the detection of malicious activity. However, their effectiveness
depends on the assumption that the monitor itself has not been compromised. From
an attacker’s point of view, the monitor poses a direct obstacle to evading detection,
making it a high-value target. An attacker with sufficient privileges may modify the
monitor’s in-memory code to ensure that malicious activity goes undetected. Without
strong assurances that the monitor remains secure and untampered, the reliability of
the monitoring process, and thus the security of the entire system is undermined.

This work addresses this challenge by designing and implementing a remote code
attestation mechanism. Remote code attestation is a cryptographic technique in which
proofs describing the state of executing code are periodically generated and sent to an
external verifier for validation. The proposed solution adopts a challenge-response
protocol, where the monitor acts as a prover and responds to unpredictable challenges
with attestations of its current code state. Any deviation from the expected state
results in a verification failure, enabling timely detection of tampering.

Through the development of a prototype and its evaluation under multiple tampering
scenarios, we demonstrate that the mechanism reliably detects in-memory code
modifications. From our testing, we deduce that full attestation introduces moderate
overhead, while an optimisation based on pseudorandom traversal can reduce this
cost. This enables flexible trade-offs between performance and security, making
remote code attestation both a practical and effective mechanism for detecting
tampering of runtime monitors.

Acknowledgements

| would like to express my sincere gratitude to my supervisor, Prof. Christian Colombo,
for his invaluable guidance, patience, and support throughout this work. His advice,
feedback, and constant willingness to engage in discussions have been instrumental in
shaping the direction of this project and navigating its challenges.

| am also very grateful to my family for their support and understanding, especially

during the more stressful periods of this journey. Their encouragement has been a
source of motivation.

Finally, | would like to thank my friends and classmates for their helpful discussions and
camaraderie, which have made this journey truly unforgettable.

Contents

Abstract

Acknowledgements

Contents

List of Figures

List of Tables

List of Abbreviations

Glossary of Symbols

1

Introduction

11
1.2
1.3

1.4

Motivation e e
Problem Overview e
Proposed Solution
1.3.1 AimsandObjectives
Contributions

Background & Literature Review

2.1

2.2

2.3

24

Runtime Monitors e
2.1.1 Security e e
Measuring In-Memory Code
2.2.1 Measurement Methodologies
222 Bytecode
Remote Attestation
2.3.1 Hardware-Based Attestation
2.3.2 Software-Based Attestation.
2.3.3 HybridAttestation
AttestationSchemes
2.4.1 Cryptographic Primitives
2.4.2 Challenge-Response Protocol

vi

vii

2.4.3 SWATT AttestationScheme 10

2.5 Coupon Collector'sProblem 12
2.5.1 Problem Description 13
2.5.2 Calculatingtheexpectation 13
2.5.3 Applicability 14

2.6 RelatedWork 14

Specification & Design 16

3.1 DesignCriteria e e e 16

3.2 ThreatModel 17
3.2.1 Attacker Assumptions e 17
3.2.2 SystemAssumptions e 17

3.3 BytecodeMeasurement 18
3.3.1 Challenges. e 18
3.3.2 Proposed Methodology 19

3.4 SchemeDesign 19
3.4.1 Prover-Verifier Architectureo L. 19
3.4.2 Measurement Procedure 20
3.4.3 Self-Attestation. 21
3.4.4 Challenge-Response Protocol 21
3.4.5 Attestation Authentication 22
34.6 ResponseTimeBounds 23

3.5 Attestation Protocol, 23

Implementation 25

4.1 Runtime Monitor e e 25

4.2 Prover e e e e e 25
421 JavaAgent. e 25
4.2.2 Class Retransformation 26
423 BytecodeCollection 26
4.2.4 Static Bytecode Representation 26
425 BytecodeMeasurement 27
4.2.6 Attestation Authentication 28
4.2.7 Sending Proof to the Verifier 28

4.3 Verifier e e e e e e e 28
43.1 ReferenceHashes 28
4.3.2 ConnectionHandling 29
43.3 Challengelssuance 29
434 ResponseTimeBounds 29

4.3.5 ProofVerification 29

5 Evaluation & Optimisation 30
5.1 EvaluationSetup 30
5.2 SecurityEvaluation e 30

5.2.1 Network-LevelAttacks. 30
5.2.2 In-Memory Code Tampering Attacks 31
5.3 Performance Evaluation 32
5.4 Optimisation (Pseudorandom Hash Traversal) 33
541 Implementation. 34
54.2 Evaluation e 34

6 Conclusion & Future Work 35
6.1 Conclusion 35
6.2 FutureWork 35

List of Figures

Figure 2.1 Challenge-Response Protocol

Figure 3.1 Prover-Verifier Architecture Illustration

Vi

List of Tables

Table 2.1

Table 5.1
Table 5.2
Table 5.3
Table 5.4

RVsec Technology Stack. 15
Attack Scenarios and Verifier Outcomes 31
In-Memory Tampering Scenarios and Verifier Outcomes 32
Average Performance Comparison 32
Effect of Class Subset Size on CPU Usage and Attestations Required . . 34

vii

1 Introduction

1.1 Motivation

Protecting systems from malicious behaviour requires the ability to detect unexpected
program behaviour during execution. One approach to achieving this is through the
use of runtime monitors, programs that observe a system’s execution to identify
deviations from expected or permitted behaviour. Runtime monitors emerged from the
need to improve the reliability of increasingly complex software systems, particularly
where traditional testing and exhaustive verification are infeasible. While their primary
role was originally to enforce correctness, safety, and compliance during execution, this
same capability also makes them effective in security contexts, where analysing live
behaviour is essential for detecting anomalies and signs of compromise.

Although runtime monitors provide important security capabilities for detecting
anomalous behaviour during execution, their deployment introduces a new point of
dependency within the system. This is because the monitor itself is not immune to
compromise, and is continuously executing alongside the rest of the system, making it
an attractive target for adversaries. An attacker may attempt to disable, bypass, or
tamper with the monitor to suppress detection and allow malicious activity to go
undetected. If such tampering is successful, the system may continue to operate under
the false assumption that it is being properly monitored, undermining the security
guarantees provided by the monitor. Therefore, ensuring that the monitor remains
operational and unmodified during execution is critical to maintaining trust in the
monitoring process. Providing this assurance is challenging, as security mechanisms
themselves can become potential points of vulnerability. Consequently, runtime
monitors benefit from additional layers of protection that serve to harden their
operation and improve the overall resilience of the security architecture.

In practice, a common method of compromising a program involves modifying its code
directly in memory. The monitor, as a program executing in memory, is particularly
susceptible to tampering by an attacker with sufficient privileges, who may alter its
instructions, disable critical logic, or interfere with its reporting behaviour. Such
tampering poses a direct threat to the monitor’s trustworthiness and necessitates a
dedicated layer of protection. Consequently, maintaining the monitor’s security
depends on ensuring that its code remains unaltered and fully functional throughout
execution. Addressing this challenge requires a mechanism capable of verifying, with
high confidence, that the monitor’s code remains untampered while the system is
running.

L-Universita
ta' Malta

University of Malta Library — Electronic Thesis & Dissertations (ETD) Repository

The copyright of this thesis/dissertation belongs to the author. The author’s rights in respect of
this work are as defined by the Copyright Act (Chapter 415) of the Laws of Malta or as modified
by any successive legislation.

Users may access this full-text thesis/dissertation and can make use of the information
contained in accordance with the Copyright Act provided that the author must be properly
acknowledged. Further distribution or reproduction in any format is prohibited without the
prior permission of the copyright holder.

1 Introduction

1.2 Problem Overview

Verifying the state of a runtime monitor’s code during execution is particularly
challenging in adversarial environments. An attacker with sufficient privileges may not
only tamper with the monitoring logic to suppress detection, but also interfere with
any local mechanism responsible for verifying that the logic remains unmodified. In
such cases, the system can no longer be trusted to perform verification reliably. To
provide meaningful assurance, verification must be carried out by an external entity
that remains beyond the attacker’s control and can independently assess the monitor’s
code. This requires generating runtime proofs that accurately represent the executing
code. These proofs must provide trustworthy evidence that the monitor remains in its
original, unmodified form. Without such guarantees, an attacker could forge or
manipulate the proof, rendering the verification process ineffective.

In addition, assessing a program’s code during execution is inherently difficult. Code
loaded and running in memory is subject to dynamic behaviours such as compiler
optimisations [1] and memory layout randomisation techniques [2] that introduce
non-determinism, resulting in variability in how it appears at runtime. This variability
makes it challenging to distinguish between expected and malicious modifications.

1.3 Proposed Solution

The limitations identified above highlight the need for a mechanism capable of
verifying the monitor’s code independently of the potentially compromised system. To
address the discussed challenges and enable reliable compromise detection, this work
proposes a remote code attestation mechanism. Remote code attestation is a
cryptographic technique in which proofs describing the current state of executing code
are generated and sent to an external verifier for validation. By comparing these proofs
against a trusted reference, it becomes possible to detect unauthorised modifications
introduced at runtime. To defend against forgery or replay of proofs, the proposed
solution uses a challenge-response protocol between the verifier and the runtime
monitor. The monitor acts as a prover, periodically generating proofs of its code in
response to unpredictable challenges issued by the verifier. Any deviation from the
expected code state results in a validation failure, enabling timely detection of
compromise. A prototype implementation is developed to demonstrate the feasibility
of the approach as well as an optimisation. The system is tested against multiple
tampering scenarios to confirm its ability to detect runtime modification, and its
performance overhead is measured.

1 Introduction

1.3.1 Aims and Obijectives
The aim of this work is to investigate the following research question:

How can remote code attestation be used to continuously and independently
verify that a runtime monitor’s code has not been tampered? Furthermore, how
viable is this technique in practice with respect to security guarantees and
operational constraints?

The objectives can be summarised as follows:

1. Design and implement a mechanism for generating cryptographic proofs
representing the runtime monitor’s in-memory code during execution.

2. Design and implement the corresponding mechanism to enable a verifier to
validate the prover’s attestations, through the appropriate protocol.

3. Implement a prototype demonstrating continuous code attestation of a runtime
monitor.

4. Define and evaluate the security of the system under a formal threat model,
including adversaries attempting to forge proofs or bypass the attestation
mechanism.

5. Evaluate and optimise the performance of the attestation mechanism.

1.4 Contributions

This project makes the following contributions:

¢ While remote code attestation has been explored in other domains, this work
applies it to the protection of runtime monitors against in-memory tampering, an
underexplored use case.

e This work demonstrates that code attestation can be effectively applied to Java
bytecode, indicating that the technique is viable not only for low-level binary
code but also for intermediate-level representations.

e This work presents a prototype that is evaluated under multiple tampering
scenarios, offering insight into detection capabilities and the associated
performance trade-offs.

2 Background & Literature Review

2.1 Runtime Monitors

Runtime monitors are software components grounded in the principles of runtime
verification, a formal method that analyses a system’s execution to determine whether
it satisfies or violates a given specification. Unlike other formal methods such as model
checking or static analysis, which aim to verify all possible execution paths, runtime
verification considers only the actual execution path taken during a system run [3].
This allows for the dynamic detection of violations in deployed systems, trading
completeness for scalability and practicality [3].

The system whose behaviour is being observed, known as the System Under Scrutiny
(SUS), produces a stream of runtime events [3] during its execution, such as function
calls, variable assignments, or state changes. A runtime monitor processes these events
sequentially to determine whether the system’s behaviour conforms to a formally
specified set of properties. These specifications are typically written in formal
specification languages, that define which sequences of events or state transitions are
considered correct or permissible according to the intended system design [4].

To enable this analysis, instrumentation is required to bridge the gap between the
execution of the SuS and the monitor’s observations [5]. Instrumentation is the
mechanism that makes the behaviour of a program observable by determining which
runtime events should be captured for analysis [6]. This is typically done by modifying
the program to extract relevant events as they occur, producing an execution trace that
the monitor can analyse against a formal specification.

2.1.1 Security

The ability to detect behavioural deviations during execution makes runtime monitors
well-suited for deployment in security-sensitive environments [7]. In such settings,
monitors act as active defence mechanisms, raising alerts in response to anomalous
behaviour caused by malicious activity. This capability enables the detection of threats
as they unfold, enhancing the system’s overall resilience against compromise.
Consequently, runtime monitors are placed in a position of significant trust within the
systems they protect. In fact, they are generally considered part of the system’s trusted
computing base and are therefore expected to operate reliably, behave correctly, and
remain free from compromise [5].

2 Background & Literature Review

Due to their critical role, monitors are of particular interest to adversaries. An attacker
who succeeds in disabling or subverting the monitor can evade detection and carry out
attacks without raising alarms. To mitigate this risk, monitors can be designed with
dedicated security architectures [7-10] that enforce strict separation from the
monitored system, ensuring they remain secure even if the rest of the system is
compromised. This architectural separation not only reduces the monitor’s exposure to
threats but also enables more focused security which may be too costly or impractical
to implement system-wide [7].

This need for targeted protection highlights the importance of adopting layered
security strategies to defend runtime monitors against a range of attack vectors. As
proposed by the RVsec technology stack [7], by combining techniques such as privilege
separation, containerisation, performance monitoring, monitor code attestation and
tamper-evident capabilities, the monitor can be more effectively safeguarded. The
objective of such layering is to ensure that, even if one defensive measure fails, others
remain active to preserve trust in the monitoring process under adversarial conditions.

Among these protective layers, this work focuses on one particularly critical layer, code
attestation. Code attestation is a cryptographic technique that enables the verification
of a program’s code state at runtime. This offers a mechanism to ensure that the
monitor’s code remains in its original, untampered form while executing, even when
the host system may be compromised. This approach contributes to the broader goal
of maintaining trust in the monitoring process.

2.2 Measuring In-Memory Code

Code attestation establishes trust in a program’s code during execution by providing
evidence to a verifier that the code remains in its original, untampered state. This is
achieved by capturing a representation of the program’s current code state and
validating it against a known reference value that reflects the expected, untampered
state of the code. This comparison enables the detection of unauthorised
modifications that may have been introduced after the program was loaded into
memory. Unlike static binary analysis, in-memory measurement verifies the code that is
currently loaded and executing. Consequently, the ability to obtain accurate and
reliable measurements of the code while it resides in memory is critical, as any
undetected modifications at this stage would undermine the entire attestation process.

2 Background & Literature Review

2.2.1 Measurement Methodologies

The code measurement process typically [11][12][13] involves reading memory
contents and computing a measurement that reflects the state of the code during
execution. This is usually achieved by directly accessing memory regions containing
machine code and calculating a cryptographic digest over their contents. The method
of memory access depends on the system’s architecture and security requirements.
Memory can be accessed using privileged software at the operating system level
through system calls [14], or by trusted hardware components such as Trusted Platform
Modules, which provide secure access to memory [15]. Dedicated Direct Memory
Access [15] hardware can also be used to access memory contents securely without
involving the main processor.

2.2.2 Bytecode

While direct measurement of machine code is feasible particularly in embedded
systems with static memory layouts and tightly controlled execution environments
[16], it presents challenges in more complex computing environments. Variability
introduced by factors such as compiler optimisations [1], memory layout randomisation
techniques [2], and differences in platform-specific binary formats [17] complicate the
generation of consistent measurements required for reliable code attestation. To
mitigate these challenges, measuring higher-level code representations such as
bytecode can provide a more practical and effective alternative.

Bytecode is an intermediate representation of program code produced after
compilation from source code and designed for execution within virtual machines.
Unlike binaries, bytecode is platform-independent and exhibits a more stable and
deterministic structure [18]. Some examples include; Java bytecode executed by the
Java Virtual Machine and Microsoft's Common Intermediate Language used by the
.NET Common Language Runtime. This higher-level representation reduces variability
in code layout and content across executions, thus making bytecode well-suited for
scenarios such as code attestation [18, 19], where consistent and verifiable
measurements are critical.

Additionally, some platforms, such as Java, implement load-time bytecode verification
to enforce basic safety guarantees before code is executed. This process is handled by
the Java bytecode verifier, a component of the Java Virtual Machine (JVM), which
performs a series of structural and type safety checks on incoming class files. These
checks verify that the bytecode conforms to the expected class file format, enforce
type safety, prohibit illegal type casts, prevent stack underflows, and ensure correct

2 Background & Literature Review

management of the operand stack [20]. While these mechanisms improve baseline
code safety, they are limited to static analysis before execution and do not provide
guarantees about the code’s integrity during runtime.

Consequently, load-time bytecode verification alone is insufficient to ensure secure
execution throughout the lifetime of a program [21]. Dynamic features, such as
runtime class loading and runtime code modification through reflection, introduce
additional risks that can undermine initial safety checks; for instance, an attacker may
inject a malicious class at runtime and use reflection to instantiate and execute it,
bypassing earlier verification mechanisms [22]. These risks highlight the necessity for
runtime code verification mechanisms, such as remote code attestation, even in
managed environments that perform initial verification at load time.

2.3 Remote Attestation

Remote attestation (RA) is a distinct security service that allows a remote Verifier to
reason about the state of an untrusted remote Prover [23]. More specifically, it is a
method for detecting the presence of malware on devices by providing evidence of
software integrity to a remote Verifier [24]. There are different types of remote
attestation, ranging from entirely software-based to fully hardware-based.

2.3.1 Hardware-Based Attestation

Hardware-based attestation schemes rely on dedicated trusted computing
architectures, such as Hardware Security Modules (HSMs) and Trusted Platform
Modules (TPMs), which enable secure storage and computation, as well as dedicated
processor architectures like Intel SGX and ARM TrustZone [23, 25]. These
hardware-based approaches provide strong security, as secret keys and measurements
are protected by hardware.

e Hardware Security Modules: Physical devices used to perform cryptographic
operations and manage, generate, and securely store cryptographic keys [26].

¢ Trusted Platform Modules: Dedicated hardware chips that are typically
integrated into a system’s motherboard and provide secure storage for
cryptographic keys, measurements, and other sensitive information [23, 27].

2 Background & Literature Review

2.3.2 Software-Based Attestation

Software-based attestation schemes aim to achieve software integrity verification
without specialised hardware. This makes them attractive for legacy or low-end
devices that lack the hardware support [25]. Their root of trust is solely estabilished
through software, typically by using carefully crafted protocols, tight timing constraints,
and cryptographic functions, under certain assumptions about the adversary. The
attestation process is performed by running the program directly from memory, which
allows it to check and validate the system’s code state [23].

2.3.3 Hybrid Attestation

Given the weaker trust anchors in software-based attestation, that is, foundational
components that can be relied on and trusted, researchers have explored hybrid
approaches that incorporate minimal hardware features. These hybrid approaches
[28-31] combine software with hardware modifications to offer more reliable
attestation guarantees.

2.4 Attestation Schemes

Within remote attestation, different schemes have been developed over the years to
address varying security requirements and system constraints. Despite their
differences, these schemes rely on fundamental components that provide essential
security guarantees. While the specific selection and integration of these components
may differ across schemes, the underlying principles often remain consistent.
Therefore, the following is a summary of the key components that are commonly used
in remote attestation schemes, along with a brief overview of some notable schemes.

2.4.1 Cryptographic Primitives

Hash Functions

A hash function [32] is a deterministic mathematical function that takes an input and
generates a fixed-size string of characters, uniquely representing the input data. Hash
functions have the following properties:

1. Pre-image Resistance: Hash functions are trapdoor functions, meaning it is
computationally infeasible to reverse the process and reconstruct the original
input from the hash value.

2 Background & Literature Review

2. Avalanche Effect: A small change in the input produces a drastically different
output.

3. Collision Resistance: It is highly unlikely for two different inputs to produce the
same hash value.

In the context of remote attestation, hash functions are used to compute a fixed-size
digest of the in-memory code by the prover. A key feature of hash functions is the
avalanche effect where even a small change to the input results in a drastically different
hash output. This makes hash functions ideal for verifying data. Apart from this, the
properties of pre-image resistance and collision resistance ensure that the hashed data
cannot be easily reversed or duplicated, maintaining both its integrity and
confidentiality.

Message Authentication Codes (MACs)

A Message Authentication Code (MAC) [32] is a cryptographic checksum used to verify
the integrity and authenticity of a message. By checksum we mean, a block of data
derived from another block of data for the purpose of detecting errors. A MAC is
created by combining the message data with a secret key. The MAC is then transmitted
along with the message. Upon receiving the message and its MAC, the receiver uses
the shared key to compute a new MAC from the message. If the computed MAC
matches the one that was sent, the message is confirmed to be both authentic and
unchanged.

In the context of remote attestation, MACs are used to ensure the authenticity of the
attestation proof sent to the verifier. The prover possesses a secret key that is known
only to them and the verifier. Since only the prover knows the key, only the prover can
generate the correct MAC. This ensures that the attestation is authentic, as no other
prover can forge a valid MAC without knowledge of the secret key.

Pseudorandom Number Generators (PRNGs)

A Pseudorandom Number Generator (PRNG) [32] is an algorithm used to generate a
sequence of numbers that appears random, but is actually determined by an initial
value known as a seed. Unlike true random number generators, which rely on
unpredictable physical processes, PRNGs use a deterministic process to produce a
sequence of numbers that mimic randomness. As a result, a sequence of numbers
generated by a PRNG is reproducible if the same seed is used.

PRNGs are used in remote attestation to introduce unpredictability into the process.

2 Background & Literature Review

One key application is generating nonces, which are arbitrary numbers that can be used
only once in communication. Nonces help defend against instances where an attacker
reuses a previous proof to impersonate the prover. In addition, PRNGs are also used to
determine the order in which in-memory code is read or hashed during attestation. By
using a PRNG, the sequence of memory accesses becomes less predictable.

2.4.2 Challenge-Response Protocol

A common approach for implementing remote attestation is through a
challenge-response protocol [23]. This protocol is designed to allow a trusted verifier
to verify the integrity and authenticity of a Prover’s state, and can be summarised as
follows:

1. The Verifier generates a challenge, which typically takes the form of a random
number or bitstring, and sends it to the Prover.

2. The Prover computes a proof based on the challenge and its current state, and
sends it back to the Verifier.

3. The Verifier validates the Prover’s response by recomputing the expected proof
based on the challenge and its knowledge of the expected state.

Verifier Prover

(1) Random challenge ¢ ¢

r (2) r = Attest (c, state)

Expected state h
(3) Verify(h,c,r)

Figure 2.1 Challenge-Response interaction between a Verifier and a Prover.

2.4.3 SWATT Attestation Scheme

As an early and influential example of software-based remote attestation, the SWATT
scheme [16] demonstrates how some of these fundamental concepts can be applied in
practice. SWATT (Software-based AT Testation) is a remote attestation scheme
designed to verify the memory contents of an embedded device. It ensures that no
malicious changes have been made to the device’s memory, all without requiring
specialised hardware.

10

2 Background & Literature Review

Scheme Description
The following is a step-by-step overview of the SWATT attestation scheme:

1. Challenge Generation

The Verifier sends a random challenge ¢ to a Prover.
2. Pseudorandom Memory Traversal

(@) The Prover receives the challenge ¢, and uses it as a seed in a PRNG, to
generate a pseudorandom sequence S = [s1, Sa, ..., Sp.

(b) The sequence S is then used to determine the order in which the Prover's
memory will be accessed. This memory traversal order is unpredictable,
which makes it resistant to attacks that rely on knowing the order of
memory access.

3. High Probability for Detecting Changes

In order to ensure that every memory location is attested with high probability, if
there are n memory locations, O(n(in(n))) memory accesses, need to be made.
This is derived from the result of the Coupon Collector’s Problem, explained in
Section 2.5.

4. Checksum Calculation

Let the Prover’'s memory be represented as M = {my, ms, ..., m, }, where m; is the
memory location at index i.

As the Prover accesses each memory location in the sequence S, a checksum H is
computed over the memory, using the proposed checksum function [16].

H = Checksum(ms,, ms,, ..., ms,) (2.1)

5. Response

Once the memory traversal is complete and the checksum is computed, the
Prover sends the checksum to the Verifier as response H. This checksum serves
as proof of the prover’s memory integrity.

6. Verification

The Verifier, having a copy of the expected memory, recomputes the expected
checksum H’ by using the same challenge ¢ as the seed in the PRNG to

11

2 Background & Literature Review

pseudorandomly traverse the expected memory.

If H = H’, the Prover's memory is confirmed to be unaltered.

Additional Security Features

To further enhance the security of the SWATT attestation scheme, two additional
features can be integrated, drawing from existing works in the literature.

Timing-based Detection

Both SWATT and other attestation schemes [31, 33] use a timing-based
mechanism to detect malware. The time taken to compute the attestation proof
is measured, and significant deviations from the expected time could indicate
malware presence. This is based on the assumption that malware introduces
additional overhead, leading to longer computation times. Thus, large timing
discrepancies may signal that the device has been compromised.

Self-Integrity Verification

Pioneer [33] is a software-based remote attestation scheme that shares
similarities with SWATT, but enhances security by verifying the code of the
attestation logic itself.

¢ In addition to computing the memory checksum H, Pioneer also computes
H.,..st, @ hash of the attestation function itself.

Hatiest = Hash(Attestation Code) (2.2)

e After calculating both H and H,..:, the Prover sends both values to the
Verifier as the attestation proof. This ensures that the attestation code has
not been tampered with, and that the attestation process is as expected.

2.5 Coupon Collector’s Problem

In probability theory, the Coupon Collector’s Problem refers to the mathematical

analysis of the process by which all distinct items are collected from a set, where each

item is selected randomly.

12

2 Background & Literature Review

2.5.1 Problem Description

Imagine you have a set of n distinct items, and each time you select an item, it is
chosen randomly and uniformly from the set. The goal is to collect one of each item.
The Coupon Collector’s Problem asks how many selections, on average, it will take to
collect all n distinct items.

Each time you pick an item, you may already have some of the items but not others. As
you collect more items, the probability of getting an item you don’t have decreases
because fewer distinct items remain to be collected.

2.5.2 Calculating the expectation

1. On the first pick, any item selected will be a distinct item, so it takes 1 pick to get
a distinct item.

2. On the second pick, n—1 distinct items are left to collected. The probability of
getting a distinct item is therefore ”T‘l

3. On the third pick, n—2 distinct items are left to collected. The probability of
getting a distinct item is therefore ”7‘2

The expected number of picks required to collect all n distinct items is the sum of the
expected number of picks for each item. This leads to the following formula for the
expected number of picks:

E(n):n-(1+%+%+...+%) (2.3)

The formula can be approximated as:
E(n) ~n-In(n)+yn (2.4)
where v is the Euler-Mascheroni constant, approximately equal to 0.5772.

Suppose you have 5 distinct items to collect, and each time you select an item, it is
random. According to the Coupon Collector’s Problem, the expected number of
selections to collect all items is 12:

1 1 1 1

13

2 Background & Literature Review

2.5.3 Applicability

Especially in the context of pseudorandom memory traversal, as discussed in SWATT,
the Coupon Collector’s Problem is relevant because it provides a theoretical
foundation for ensuring that every memory location is attested with high probability.
By using a pseudorandom sequence to access memory locations, the scheme can
achieve a high level of coverage while maintaining efficiency.

2.6 Related Work

In literature, some approaches have been proposed to remotely verify the integrity of
monitoring components within a system. However, the application of remote code
attestation to runtime monitors responsible for detecting deviations in system
behaviour during execution remains underexplored. Nonetheless, existing works
highlight the importance of establishing trust in monitoring components before relying
on their assessments.

A notable example that verifies the integrity of the monitoring component itself is a
remote attestation scheme for mobile platforms based on hardware-supported trusted
execution environments [34]. This approach separates system execution into two
isolated environments: one dedicated to security-critical functions and another for
regular applications. The monitor operates within the secure environment and
continuously observes the normal environment, measuring and recording critical
system events such as memory modifications and changes to privileged registers. Its
own integrity is verified through remote attestation using a software-based Trusted
Platform Module (TPM), also located within the secure environment. This
software-based TPM provides the same cryptographic and secure storage capabilities
as its hardware counterpart, ensuring that the monitor remains trustworthy.

Other works focus on verifying the hypervisor, which serves as a monitor by managing
virtual machines. A hypervisor, also known as a virtual machine monitor (VMM), is
software that controls the execution of multiple virtual machines on a physical system
and enforces their separation to prevent interference. To verify the hypervisor’s
integrity, some approaches [9] capture the complete system state, including memory
contents and CPU registers, and send this data to a remote verifier for analysis.
Alternatively, other methods [10] perform faster integrity checks by triggering
lightweight verification routines through secure, dedicated communication channels,
allowing a remote verifier to assess the hypervisor’s integrity.

14

2 Background & Literature Review

In their recent work [7], Colombo et al. propose a technology stack (RVsec), specifically
designed for the secure deployment of runtime monitors. Recognising that monitors
require stronger protection than ordinary software, their work addresses this need
through dedicated monitor hardening. RVsec achieves this by layering multiple security
techniques, each aligned with progressively higher levels of system compromise.
Instead of attempting to uniformly secure the entire system, RVsec strategically
focuses on protecting the monitor, which represents a smaller but critical attack
surface. An overview of the RVsec technology stack is presented in Table 2.1:

Table 2.1 RVsec Technology Stack.

Level of Compromise Observable Scenario Proposed Layer
No Compromise Normal behaviour with potential bugs Functional RV Monitors
Malicious Behaviour Abnormal performance behaviour Performance and Security RV Monitors
Non-Privileged Access Abnormal behaviour in user space Monitor Isolation and Access Control
Privileged Access Abnormal behaviour with elevated privileges Monitor Code Attestation
Monitor is Compromised System completely taken over Tamper-Evident Logging

In their case study of a quantum-safe chat application, Colombo et al. evaluate the
trade-offs of these security layers in terms of setup complexity and runtime overhead.

One of the key layers in the RVsec technology stack is monitor code attestation, which
is proposed specifically to address scenarios where an elevated malware infection
occurs, that is, the attacker achieves privilege escalation. In such a scenario, the entire
system may be under attack, but the cryptographic secrets are assumed to remain
protected. To ensure that the monitor has not been tampered with along with the rest
of the system, the paper suggests using a code attestation protocol.

The work of this dissertation builds upon this by designing and implementing a remote
code attestation mechanism to safeguard the monitoring process from an attacker with
elevated privileges.

15

3 Specification & Design

In order to meet the challenge of detecting in-memory code tampering in runtime
monitors, this chapter presents the design of a remote code attestation scheme. Based
on the foundations outlined in the previous chapter, the scheme enables a trusted
Verifier to remotely verify the state of a runtime monitor’s code. Our design takes into
account the context of the RVsec technology stack [7], which assumes the availability
of a Hardware Security Module (HSM), considers an attacker with elevated privileges
and evaluates the approach using a Java-based runtime monitor.

3.1 Design Criteria

A secure and practical remote attestation scheme must satisfy several essential design
criteria to provide strong security guarantees while remaining suitable for real-world
deployment. These criteria ensure that the attestation process is resilient against
advanced adversaries and imposes minimal disruption to normal system operations.
Based on our previous analysis of existing literature we identify the following criteria:

1. Runtime Detection: The scheme must reliably detect any tampering by verifying
the runtime code directly, rather than relying solely on static file checks. This also
includes verifying the integrity of the attestation logic itself to prevent attackers
from bypassing or disabling the attestation mechanism.

2. Freshness of Attestation: Attestation proofs must represent the current system
state and not reflect stale or outdated measurements. Freshness prevents replay
attacks, where previously valid attestation results are reused to hide malicious
activity.

3. Authenticity & Integrity of Responses: The scheme must ensure that attestation
proofs are generated by the legitimate prover and have not been tampered with
during transmission. This is typically achieved through methods of signing the
proof.

4. Minimal Trusted Computing Base (TCB): The set of system components that
must be inherently trusted for the security of the attestation process should be
minimised, as this lowers the overall attack surface.

5. Minimal Overhead: The attestation process should introduce minimal
computational overhead to avoid degrading the performance of normal system
operations. This is particularly critical for runtime monitors that must operate
continuously and in resource-constrained environments.

16

3 Specification & Design

3.2 Threat Model

To satisfy the design criteria and provide adequate defense against attackers with
elevated privileges, it is essential to formally define the adversarial capabilities and
system assumptions under which the proposed attestation scheme operates. The
following threat model outlines both the attacker’s capabilities and the assumptions
required to ensure the security of the scheme.

3.2.1 Attacker Assumptions

¢ Privileged Access: The attacker has elevated privileges and can modify any part
of the system’s software and can modify, inspect, or inject arbitrary code into the
target system, including tampering with the monitor and its surrounding
environment. This includes exploiting features such as reflection, runtime
compilation, and dynamic class loading to manipulate the monitor’s execution.

¢ No Hardware Tampering: The attacker does not have physical access or the
ability to interfere with hardware components such as the CPU, memory, or
storage.

¢ Network-Level Spoofing: The attacker may observe, intercept, or inject network
traffic between the Prover and Verifier. They can attempt to spoof responses by
forging attestation proofs or replaying old valid responses from a previously clean
state.

3.2.2 System Assumptions

e Secure Key Distribution: The shared secret key is securely distributed to the
Verifier and the Prover, before the system is exposed to potential compromise.
The key exchange process is protected against eavesdropping and tampering.

e Hardware Security Module: The shared secret key is stored by the Prover in a
Hardware Security Module unreachable by the attacker. The cryptographic
operations are also performed in the HSM, ensuring the key is never exposed,
and that the operations are performed securely.

¢ Trusted Verifier: The Verifier is a trusted entity that securely stores cryptographic
keys as well as the expected in-memory code measurements to be sent by the
Prover. It is assumed to be uncompromised and capable of performing secure
cryptographic operations.

17

3 Specification & Design

e Communication Channel: Communication between the Prover and the Verifier is
assumed to occur over an insecure channel, meaning that an attacker may
observe, intercept, modify and inject attestation proofs.

3.3 Bytecode Measurement

A core feature of our attestation scheme is the focus on measuring the in-memory
representation of the runtime monitor’s code, rather than relying on static file-based
checks, which are ineffective against attacks that occur after the system has booted.
This design choice is motivated by the threat model, which assumes that the attacker
may have privileged access to the system and could tamper with executing code after
deployment.

In execution environments such as the Java Virtual Machine (JVM), programs are
compiled into bytecode and loaded into memory to be executed. This bytecode is then
either interpreted directly or compiled into machine code at runtime to improve
performance. Regardless of the execution strategy, the original bytecode remains
accessible in memory. Unlike machine code, which is platform-specific, and may be
relocated or discarded during execution, bytecode maintains a consistent structure
making it easier to measure reliably.

For these reasons, in our attestation scheme we choose to measure bytecode instead
of machine code. By measuring the bytecode after it has been loaded into memory, the
scheme captures the actual code that is subject to execution, enabling the detection of
unauthorised modifications. This protects against attackers with elevated privileges
who may:

e Modify or replace loaded classes in memory after program startup.

¢ |nject new or malicious classes dynamically during execution.

3.3.1 Challenges

Although bytecode offers consistency, the JVM employs dynamic behaviours that
affect the runtime representation of bytecode in memory. Two specific challenges must
be addressed to ensure that bytecode measurement is both complete and reproducible:

e Lazy Class Loading: Classes are only loaded into memory when they are first
accessed. As a result, not all code is captured at the point of measurement.

¢ Dynamic Classes: Bytecode loaded into memory may differ from its on-disk
representation due to build-time metadata instrumentation applied during class

18

3 Specification & Design

loading. This can lead to discrepancies between the expected bytecode and the
actual bytecode present in memory.

3.3.2 Proposed Methodology

To address these challenges, we propose simulating a static execution environment,
allowing us to capture a complete and deterministic representation of all relevant
bytecode at measurement time. We propose to achieve this through the following
techniques:

Bytecode Normalisation

To ensure the accuracy of these measurements, it is important to account for the
variability of bytecode due to factors like debug information, line numbers, and
metadata that differ across builds or runtime configurations. Normalising the bytecode
before measurement resolves these discrepancies and ensures that the measurements
remain consistent across equivalent executions, reflecting only the monitor code itself.

Force Loading Classes

Furthermore, to ensure that the measurement accurately represents the intended
bytecode it is necessary for all required classes to be loaded into memory immediately.
This guarantees a stable static memory representation, making it possible to rely on the
measurement without concerns over runtime changes or missing classes.

3.4 Scheme Design

With the foundational requirements and threat landscape established, we now proceed
to describe the building blocks of our attestation scheme.

3.4.1 Prover-Verifier Architecture

The attestation scheme involves two principal components:

e Prover: An untrusted system executing the runtime monitor. This includes an
attestation program embedded in the same runtime environment responsible for
collecting the in-memory representation of monitor code, computing
cryptographic measurements, and sending attestation proofs to the Verifier.

e Verifier: A remote and trusted entity (acting as a server) that maintains a reference
baseline of expected code measurements and a shared secret key. The Verifier

19

3 Specification & Design

initiates attestation by issuing unpredictable challenges, verifies the authenticity
of responses, and decides whether the monitor’s code has been compromised.

. Attestation
Verifier Prover

|

HSM

Figure 3.1 lllustration of the prover-verifier architecture, with the prover connected to
a Hardware Security Module (HSM).

3.4.2 Measurement Procedure

To measure the bytecode, we propose computing a hash of the bytecode for each class
used by the runtime monitor.

H, = Hash(class;) (3.1)
Hy = Hash(classs)

H, = Hash(class,,)

These per-class hashes act as compact fingerprints, capturing the precise state of the
monitor’s code. Even small modifications in the bytecode will yield different hash
values, enabling tampering detection with high sensitivity. Compared to transmitting
full bytecode, using hashes greatly reduces both data transfer and processing
requirements, making the approach practical for frequent, real-time attestations.

To generate the final attestation proof, the individual class hashes are concatenated
and hashed again to form a single global hash:

H = Hash(H, + Hy+ Hs + ... + H,,) (3.5)

Bytecode Reference

For validation, the Verifier maintains a trusted reference of the expected per-class
hashes. These are generated during setup and securely stored before deployment.
During attestation, the Verifier reconstructs the expected global hash from the
reference hashes and compares it to the attestation sent by the Prover. This is not only

20

3 Specification & Design

more efficient than comparing the full bytecode, but also allows for more flexibility as a
subset of classes can be used to perform attestation if necessary.

3.4.3 Self-Attestation

In addition to attesting the runtime monitor’s code, it is also essential to attest the
attestation mechanism code itself. This detects attackers tampering with the
attestation logic which would undermine the security guarantees of the entire system.

By incorporating a hash of the attestation bytecode along with the monitor’s bytecode
into the global hash H, we ensure that any modification of the attestation logic is
detected. This allows for detecting attempts to modify or bypass the attestation
process.

Hupest = Hash(Attestation Bytecode) (3.6)

H = HCLSh(Hl + HQ + H3 =+ ...+ Hn + Hattest) (37)

3.4.4 Challenge-Response Protocol

A central feature of our attestation scheme is the use of a challenge-response protocol
to ensure the freshness of attestation proofs. In this design, the Verifier initiates each
attestation by issuing a unique cryptographic challenge, in the form of a random nonce.
The Prover must incorporate this challenge into the attestation computation to return a
proof that is both bound to the current bytecode state and authenticated.

H = Hash(nonce + Hy + Hy + H3 + ... + H,,) (3.8)
The challenge-response protocol serves the following key purposes:

1. Replay Attack Prevention: A unique, unpredictable challenge ensures that proofs
are valid only for a specific session. Captured proofs cannot be reused, as they
won’t match future challenges.

2. Unpredictability: Since the challenge is generated by the Verifier and unknown to
the Prover in advance, responses cannot be precomputed.

3. On-Demand Verification: The Verifier can initiate attestation at any time,
supporting flexible intervals and adapting to shifting security needs.

21

3 Specification & Design

3.4.5 Attestation Authentication

To ensure the authenticity and integrity of attestation proofs, it is essential to
incorporate a mechanism for attestation authentication. This mechanism prevents
attackers from forging or tampering with the attestation response, ensuring that the
Verifier can trust the received proof. To achieve this authentication, we employ a
Message Authentication Code (MAC), which provides cryptographic assurance that the
attestation response has not been altered and that it originates from the legitimate
Prover. The MAC is computed using the shared secret key and global bytecode hash.
This approach ensures the following:

1. Untampered Proofs: The MAC ensures that the attestation data remains
unaltered during transmission. Any modification to the attestation response will
result in a failed MAC verification, signaling potential tampering.

2. Authentication: The MAC also serves as proof of the origin of the response. Only
the Prover in possession of the shared secret key can generate a valid MAC,
ensuring that the response is genuinely from the legitimate Prover and not a
malicious entity.

Hash-based Message Authentication Code (HMAC)

To compute the MAC, we use the Hash-Based Message Authentication Code (HMAC)
[32], a widely adopted method for generating message authentication codes. HMAC
combines a cryptographic hash function with a secret key, offering strong resistance to
forgery. It was chosen for its wide support across platforms and its practicality, as it
does not require specialised cryptographic primitives. The HMAC is computed as
follows:

HMAC(K,M) = Hash((K ®opad) + Hash((K @ipad) + M)) (3.9)

where (i) K is the shared secret key stored in the HSM; (ii) M is the message, in this
case the global hash of the monitor’s bytecode; (iii) opad and ipad are the outer and
inner padding constants, respectively; (iv) + denotes concatenation.

The computed HMAC is then sent along with the global hash as part of the attestation
response to the Verifier. The Verifier can then verify the authenticity of the response by
recomputing the HMAC using the shared secret key and comparing it to the received
HMAC. If they match, the Verifier can trust that the attestation response is genuine and
has not been tampered with.

22

3 Specification & Design

3.4.6 Response Time Bounds

To prevent attackers with elevated privileges from exploiting additional response time
to tamper with the monitor or forge a valid proof, the Prover is required to respond
within a bounded time window. Failure to do so results in the Verifier rejecting the
attestation. These timing bounds serve two key purposes:

1. Restrict Tampering Window: An upper bound limits the time available to an
attacker for memory manipulation or constructing a forged proof after receiving
the challenge.

2. Precomputation & Replay Detection: Optionally, a minimum bound can help
detect unrealistically fast responses, which may indicate a replayed or
precomputed reply rather than genuine execution.

3.5 Attestation Protocol

Having discussed the core components of the attestation scheme we now bring these
elements together into a complete protocol. The following is a step-by-step overview
the proposed attestation protocol:

1. Challenge Generation
The Verifier sends a random challenge c to the Prover (runtime monitor).
2. Authentication Handshake (Skip if not the first challenge)

(@) The Prover, computes the HMAC M of the challenge using the shared secret
key and sends it back to the Verifier.

(b) The Verifier receives the HMAC M and computes the HMAC M’ of the
challenge using the same key.

(c) If M and M’ match, the Verifier can trust that it is communicating with the

correct Prover.
3. Bytecode Measurement
For each class loaded in the Prover’'s memory, the following steps are performed:

(@) The bytecode is normalised by removing dynamic parts.
(b) A hash of the current bytecode is computed.

(c) The hash is stored in a list of hashes.

23

3 Specification & Design

. Global Hash Computation

Let the Prover’s bytecode hashes be represented as H,, H,, ..., H,,. The global
hash H is computed by concatenating the bytecode hashes and challenge c:

H = Hash(c+ Hy + Hy + ... + H),) (3.10)

. HMAC Generation

The Prover computes the HMAC of the global hash A using the shared secret key.

. Response

The Prover sends the computed global hash H along with the corresponding
HMAC to the Verifier. This response serves as cryptographic proof of the Prover’s
current bytecode state and ensures that the response has not been forged or
altered.

. Verification

Upon receiving the response, the Verifier performs the following steps:

(@) The response time is checked against the upper and lower bounds. If the
response time is outside the expected range, the Verifier concludes that the
Prover is compromised.

(b) The expected global hash H’ is computed by using the same challenge c to
seed its pseudorandom number generator and traverse the expected
bytecode hashes in the same order as the Prover.

(c) The received hash H is checked against the expected value H'. If H # H’,
the verifier concludes that the Prover’s bytecode state has been modified or
tampered with.

(d) The authenticity of the response is validated by recomputing the HMAC
using the shared secret key K and comparing it with the received HMAC. If
the HMACs do not match, the verifier concludes that the response is invalid
or has been forged.

If both the global hash and the HMAC verification succeed, the verifier concludes
that the runtime monitor is in a trusted state and has not been tampered with.

To validate the feasibility and effectiveness of the proposed attestation scheme,
we now turn to its implementation, detailing how each component was realised
in a working prototype.

24

4 |Implementation

This chapter describes an implementation of the remote code attestation scheme,
detailing how the theoretical design was translated into a working system. The
implementation consists of two main components: the Prover, implemented as a Java
Agent responsible for making runtime bytecode measurements and generating
attestation proofs, and the Verifier, implemented as a standalone Python server that
issues challenges and validates responses.

4.1 Runtime Monitor

The runtime monitor employed in this work is based on the Java implementation
presented in the RVsec paper [7]. In that work, Colombo et al. demonstrate the
deployment of runtime monitors using a quantum-safe chat application as a case study.
This chat application serves as the System Under Scrutiny (SuS), offering a realistic
environment for evaluating the effectiveness of runtime security mechanisms in
detecting abnormal or malicious behaviours. Their study focuses on a high-stakes
setting involving a group chat application developed through a NATO-funded project
[35], which implements a quantum-future group key establishment (GAKE) protocol.
The monitor itself is generated using LARVA [36], a tool for specifying formal
behavioural properties over Java programs using symbolic timed automata. By
integrating our remote attestation mechanism into this case study, we demonstrate its
practicality and effectiveness in securing runtime monitors deployed in real-world,
security-sensitive applications such as post-quantum secure group communication
systems.

4.2 Prover

For our attestation scheme, the Prover is implemented as a Java Agent running
alongside the monitor in the same runtime environment. This enables access to the
monitor’s in-memory code, ensuring measurements reflect its runtime state. While the
monitor enforces behavioural correctness, the Prover collects bytecode measurements
and generates attestation proofs in response to verifier-issued challenges.

4.2.1 JavaAgent

A Java Agent is a special type of Java program that can be attached to the Java Virtual
Machine (JVM) at startup or during runtime. Unlike regular Java applications, agents

25

4 Implementation

operate at the JVM level and have privileged access to the internals of the running
environment. Java Agents have the ability to monitor and manipulate the execution of
Java applications, including intercepting method calls, modifying bytecode, and
accessing runtime data structures. Java Agents make use of the
java.lang.instrument API, which provides mechanisms for dynamically observing
and modifying Java applications during execution. Through this API, agents can register
a ClassFileTransformer, a component that intercepts and optionally modifies the
bytecode of classes before they are fully loaded by the JVM. This enables the agent to
analyse or alter class behaviour during the class loading process.

4.2.2 Class Retransformation

In addition to intercepting class loading, the java.lang.instrument API also provides
support for class retransformation, allowing agents to request that classes which have
already been loaded by the JVM be reprocessed at runtime. This capability is
particularly useful for scenarios where it is necessary to obtain the latest in-memory
representation of classes. Class retransformation is not universally supported across all
JVM implementations, but instead requires explicit support from the underlying virtual
machine. In this implementation, we utilise the IBM Semeru Runtime Open Edition
with the OpenJ9 JVM, which provides robust support for class retransformation. This
feature is crucial for accurately measuring the in-memory state of the runtime
monitor’s code.

4.2.3 Bytecode Collection

The Prover is implemented as a Java Agent using the java.lang. instrument API, which
allows it to intercept and manipulate bytecode at runtime. This is accomplished by
registering a custom ClassFileTransformer, a component that the JVM automatically
invokes whenever a class is about to be loaded or retransformed. In our case, we
design the custom ClassFileTransformer to: (i) store a copy of the raw bytecode of
each intercepted class; and (ii) retain a reference to the corresponding Class object.
This retained reference enables the Java Agent to later perform class retransformation.

4.2.4 Static Bytecode Representation

For accurate and comparable bytecode measurements, it is essential that the bytecode
representation being attested is static, that is, it is stable, complete, and free from
variations. In Java, there are two features that need to be addressed to achieve this:
lazy loading and dynamic classes.

26

4 Implementation

Lazy Loading

The JVM loads classes lazily, meaning that a class is only loaded into memory when it is
first referenced during execution. This behaviour is efficient but poses a problem for
runtime attestation, as not all classes may be loaded at the time of measurement. To
address this, the Prover agent must proactively force the loading of the runtime
monitor classes. This is achieved by maintaining a predefined list of classes that are
essential to the monitor’s functionality. These classes are then loaded explicitly using
Class.forName (). This ensures that their bytecode is resident in memory before any
attestation measurements are performed.

Dynamic Classes

When a Java class is loaded, its bytecode may be modified by the JVM to include
additional metadata, potentially causing discrepancies between the expected and
actual bytecode in memory. To ensure that measurements reflect only the functional
behaviour of the monitored code, non-functional metadata must be removed prior to
hashing. Debug information, which varies across build environments but does not
affect execution, can otherwise cause unnecessary hash mismatches and reduce the
reliability of attestation. In our implementation, we make use of the ASM bytecode
manipulation framework to strip non-essential debug information from the class
bytecode and normalise it. ASM provides a low-level API for reading, modifying, and
writing Java bytecode efficiently. Specifically, the normalisation process removes: (i)
line number tables, which are used for debugging; and (ii) local variable tables, which
provide information about local variables in methods.

4.2.5 Bytecode Measurement
The bytecode measurement process consists of the following steps:

1. Bytcode Collection: The bytecode of all loaded classes is collected and stored.

2. Bytecode Normalisation: The collected bytecode is normalised by removing
dynamic data using the ASM framework. This ensures that the bytecode is in a
consistent state for hashing.

3. SHA-256 Computation: A SHA-256 hash is computed over each class’ bytecode.
The hashes of all classes are then concatenated with the nonce to form a single
string, which is then hashed again to produce the global bytecode hash H.

H = SHA256(nonce+SHA256(class,)+SHA256(classy)+. ..+ SHA256(class,,))
(4.1)

27

4 Implementation

Hashing classes individually reduces storage needs and speeds up verification, as
the Verifier compares fixed-size hashes instead of full bytecode. It also adds
flexibility, allowing selective validation when full attestation is not required.

4.2.6 Attestation Authentication

To ensure that attestation responses are both authentic and tamper-proof, the Prover
computes a Message Authentication Code (MAC) over the final measurement hash
before sending it to the Verifier. This cryptographic authentication step ensures that
only a legitimate Prover, one in possession of the shared secret key, can produce a valid
response. In our implementation, the MAC is constructed using HMAC-SHA256, an
algorithm that combines a cryptographic hash function (SHA-256) with a secret key.
This was chosen for its maturity as a well-studied and widely adopted standard in
cryptographic applications, providing a strong guarantee of authenticity and integrity.

4.2.7 Sending Proof to the Verifier

Once the attestation proof is generated and authenticated, it is transmitted to the
Verifier over a TCP socket connection initiated by the Prover. Buffered streams are used
to ensure efficient and reliable data exchange. The Prover waits for a challenge (nonce),
performs the measurement, computes the final hash, and generates the HMAC as
described previously. To ensure safe transmission, the HMAC, which is a fixed-length
binary value that may contain non-printable characters, is Base64-encoded. The final
proof, comprising the hex-encoded measurement hash and the Base64-encoded
HMAC, is concatenated using a colon delimiter and sent to the Verifier.

4.3 Verifier

With the attestation proof constructed and transmitted by the Prover, the role of the
Verifier is to independently validate the received response. Python is used to
implement the Verifier due to its simplicity and wide support for networking and
cryptographic operations, which allow for a straightforward and reliable
implementation. The Verifier is responsible for issuing unpredictable challenges and
validating incoming proofs to detect any signs of tampering.

4.3.1 Reference Hashes

To perform validation, the Verifier requires a trusted reference of expected bytecode
hashes. These reference hashes are computed during a secure initialisation phase of

28

4 Implementation

the Prover and saved in a JSON file. Upon startup, the Verifier loads this file into
memory to use as the basis for comparison during attestation.

4.3.2 Connection Handling

With the reference hashes in place, the Verifier then listens to one incoming connection
from the Prover. It operates on a predefined TCP port using the socket library, which
provides a low-level interface for network communication. Upon receiving a
connection request, the Verifier accepts it and spawns a new thread to handle it. The
connection remains active until the Prover terminates or the Verifier explicitly closes it.

4.3.3 Challenge Issuance

The Verifier initiates attestation rounds by issuing unique challenges to the Prover.
Challenges are generated as 16-byte hexadecimal nonces using the secrets library,
which provides a secure way to generate random numbers suitable for cryptographic
use. The nonce is then transmitted to the Prover over a TCP connection using a
buffered output stream, which allows reliable writing of data to the socket.

4.3.4 Response Time Bounds

As part of each attestation round, the Verifier also monitors how long the Prover takes
to respond. Response time is measured using time.perf counter (), which offers
high-resolution timing suitable for short-duration measurements. Abnormally fast
responses may suggest the Prover is bypassing the measurement process or replaying
precomputed values. Conversely, unusually slow responses may indicate the attacker is
tampering with the system and delaying responses to avoid detection. In either case,
the Verifier uses these timing observations to flag or reject suspicious activity
accordingly.

4.3.5 Proof Verification

Upon receiving the attestation proof from the Prover, the Verifier reconstructs the
expected global hash using the received nonce and trusted reference hashes, following
the same procedure as the Prover. It then decodes the received HMAC from Base64
and uses the hmac library, along with the shared secret key and expected hash, to
compute a local HMAC. This computation employs SHA-256 as the underlying hash
function, as provided by the hashlib library. If the computed HMAC matches the
decoded one, the proof is accepted; otherwise, it is rejected as a sign of compromise.

29

5 Evaluation & Optimisation

Having completed the implementation of our remote code attestation scheme, we now
evaluate its effectiveness by validating its security guarantees through targeted testing
and measuring the performance.

5.1 Evaluation Setup

The evaluation was performed in a local test environment comprising: (i) a
Python-based Verifier server running on localhost, (ii) a Java-based Prover
implemented as a Java Agent integrated with the runtime monitor, (iii) an attacker client
written in Python to simulate network-level attacks, and (iv) a tampering agent, which
is a Java Agent, used to simulate in-memory code tampering.

5.2 Security Evaluation

To demonstrate the effectiveness of our remote code attestation mechanism, we
identify two main categories of attacks: network-level attacks and in-memory code
tampering. Network-level attacks test the Verifier’s ability to detect forged or
manipulated proofs during communication with the Prover. In contrast, in-memory
code tampering tests whether the system can detect unauthorised modifications made
directly to the monitor’s bytecode during execution.

5.2.1 Network-Level Attacks

The network-level attacks are simulated using a custom Python client that interacts
with the Verifier and can be configured to perform the following attack scenarios:

1. Replay Attack: A previously valid proof is resent, violating freshness and
potentially the minimum timing bound.

2. Precomputation: A proof is computed in advance and reused, violating freshness
and potentially the minimum timing bound.

3. Tampered HMAC: The HMAC of a valid proof is altered, violating authenticity
and integrity.

4. Delaying Responses: The proof is delayed to allow time for tampering, violating
the defined timing bounds.

30

5 Evaluation & Optimisation

Results

Table 5.1 summarises the outcomes of the tested network-level attacks. The table
covers the key network-level attacks that could compromise the integrity, freshness, or
authenticity of the attestation protocol over an untrusted channel assuming the
attacker cannot access the shared secret.

Table 5.1 Attack Scenarios and Verifier Outcomes

Attack Type Description Verifier Outcome
Replay Attack An old proof is sent to the Verifier Proof Rejected
Precomputation Precomputed proof is sent to the Verifier | Proof Rejected
Tampered HMAC Invalid HMAC is sent to the Verifier Proof Rejected
Delaying Responses | Proof response time exceeds bounds Proof Rejected

5.2.2 In-Memory Code Tampering Attacks

Unlike network-level attacks that target the communication channel, in-memory
tampering directly modifies the runtime state of the monitor. To evaluate the
attestation mechanism'’s ability to detect such modifications, we developed a dedicated
tampering program in the form of a Java Agent using the java.lang.instrument API
and ASM framework. This agent supports five distinct types of tampering attacks:

1. Safe Tampering: A minor functional change is made by modifying the operand of
a bipush instruction in larva. _cls_chatappdemo0 from 13 to 14. This
adjustment does not break the class structure or cause observable changes in
system behaviour during evaluation, serving as an example of non-crashing
tampering.

2. Attestation Logic Tampering: To simulate a minimal modification, we inject a NOP
instruction into the premain () method of the attestation logic. Although a NOP
does not alter program behaviour, it changes the bytecode, simulating subtle
modifications to the attestation logic itself that should still be detected by the
Verifier through self-attestation.

3. Monitor Disabling Tampering: The trigger() method in the runtime monitor class
(olparser.Parser) is forcibly altered to return immediately. This method normally
invokes the monitor’s logic to process runtime events, so bypassing it silences the
monitor and prevents violation detection. This test simulates an attacker disabling
the monitor and evaluates whether attestation detects this manipulation.

31

5 Evaluation & Optimisation

4. Class Breaking Tampering: The agent flips a specific byte in one of the loaded
classes (larva. cls_chatappdemoO). This creates a deliberately malformed class
file, simulating a broken class.

5. Extra Class Loading: A tampering class is loaded into memory. This scenario
simulates an attacker injecting a malicious class, which could potentially interfere
with the monitor’s operation.

Results
Table 5.2 In-Memory Tampering Scenarios and Verifier Outcomes
Tampering Mode Description Verifier Outcome
Safe Tampering Minimal tampering in runtime monitor Proof Rejected
Attestation Logic Tampering | Minimal tampering in attestation logic Proof Rejected
Monitor Disabling Tampering | Major tampering disabling the runtime monitor | Proof Rejected
Class Breaking Tampering Byte flip causing a malformed class Proof Rejected
Extra Class Loading Unexpected classes loaded in memory Proof Rejected

All in-memory attacks were successfully detected by the Verifier. Even subtle changes,
like Safe Tampering, triggered attestation failure. These results confirm that the
attestation scheme effectively detects tampering.

5.3 Performance Evaluation

Following the security evaluation, we assessed the runtime cost of our attestation
mechanism by measuring the CPU usage of the JVM process, which hosts both the
runtime monitor and the attestation logic. CPU usage refers to the proportion of CPU
time that the process requires to execute, expressed as a percentage of total capacity,
with 100% indicating full utilisation of a single core. To do so, we employed pidstat, a
standard Linux tool for per-process CPU usage monitoring. The monitor was run with
and without attestation enabled, and CPU usage was recorded every second for 15
seconds in each run. To ensure reliability, this process was repeated four times and the
results averaged. Table 5.3 summarises the measured CPU usage, reported as
single-core usage and total usage across 16 cores.

Table 5.3 Average Performance Comparison

Configuration (4 runs) | Single-core CPU Usage | Total CPU Usage (16 cores)
Monitor 7.99% 0.50%
Monitor + Attestation 82.12% 5.13%

32

5 Evaluation & Optimisation

The results show that enabling attestation significantly increases single-core CPU
usage, rising from 7.99% to 82.12%. However, the overhead remains manageable in
practice, particularly on modern multi-core systems.

5.4 Optimisation (Pseudorandom Hash Traversal)

Measuring the complete in-memory representation of all classes at each attestation
interval ensures strong integrity guarantees but incurs significant computational
overhead. This can degrade system performance, particularly in environments with
many loaded classes and frequent attestation requests. To address this, we propose a
pseudorandom hash traversal strategy, inspired by the pseudorandom memory access
pattern used in the SWATT attestation scheme. Instead of exhaustively measuring
every class, the Prover samples a pseudorandom subset, balancing overhead and
detection guarantees.

Measurement Procedure

Given a set of n loaded classes, the Prover selects a subset of & classes to measure,
where k < n. The selection process is performed as follows:

1. Using a PRNG, generate a sequence S = [sy, s, ..., S¢] of unique indices.

2. The sequence S is then used to select the corresponding classes and compute
their normalised bytecode hashes.

3. Concatenate the resulting hashes and compute a global hash to be sent to the
Verifier as part of the attestation proof. In this case, the global hash is computed
as: H = Hash(H,, + Hy, + ... + H,,), where H,, is the hash of the i*" selected
class in the pseudorandom sequence.

Challenge-Dependent Traversal

To ensure unpredictability, freshness of the attestation process, and effective coverage
of the monitor’s code over time, the pseudorandom number generator is seeded using
the unique challenge (nonce) provided by the Verifier. This guarantees that (i) the
Verifier can deterministically reproduce the class sampling order based on the same
challenge, enabling independent verification of the attestation response; (ii) the
attacker cannot predict in advance which classes will be selected for measurement, as
the sampling is derived from an unpredictable, challenge-dependent seed; and (iii) each
attestation round samples a different subset of classes, ensuring that over multiple
attestations, the entire bytecode is eventually covered.

33

5 Evaluation & Optimisation

5.4.1 Implementation

To implement bytecode measurement using the pseudorandom hash traversal
optimisation, we generate a pseudorandom sequence of class indices using a Linear
Congruential Generator (LCG) [32] seeded with the Verifier's challenge. This ensures a
unique selection for each attestation round, enabling probabilistic coverage while
reducing performance overhead. The LCG, defined by the recurrence

Xpi1 = (a- X,, + ¢) mod m, produces a deterministic pseudorandom sequence. With
well-chosen parameters and sufficiently unpredictable challenges, this approach
approximates uniform coverage over the indices of classes loaded in memory.

5.4.2 Evaluation

To evaluate the performance impact of our optimization, we again measured CPU
usage using the same approach as described previously, considering four
configurations: sampling 25%, 50%, 75%, and 100% of the loaded classes. In our tests,
this amounted to 330 loaded classes.

Table 5.4 Effect of Class Subset Size on CPU Usage and Attestations Required

Subset Single-core CPU Usage | Total CPU Usage (16 cores) | Attestations Required
25% (83) 52.50% 3.28% 25
50% (165) 77.32% 4.83% 13
75% (248) 81.32% 5.08% 9
100% (330) 95.57% 5.97% 1

Table 5.4 shows that sampling fewer classes per attestation significantly reduces CPU
usage, especially below a subset of 50%. However, this approach takes longer to fully
cover the in-memory bytecode across multiple attestations. To estimate the expected
attestations needed to sample all loaded classes at least once, we rely on the Coupon
Collector’s Problem, as described in Section 2.5, which states that the expected total
number of samples needed to collect all n distinct classes can be approximated by
E(n) = n-Inn+~n, where v ~ 0.5772.

For 330 classes, this gives about 2104 total samples. Each round samples & unique
classes, so the expected number of attestations is roughly % This corresponds to
about 25 attestations for a 25% subset (k = 83), 13 for 50% (k = 165), and 9 for 75%
(k = 248). Overall, the results show a clear trade-off: smaller subsets reduce
per-attestation CPU usage but require more attestations for full coverage, while larger
subsets increase per-attestation overhead but achieve faster coverage. The 100%
subset naturally incurs the highest CPU usage and, as expected, exceeds that of a

traditional full attestation due to the overhead of pseudorandom traversal.

34

6 Conclusion & Future Work

6.1 Conclusion

In this work, we investigated the feasibility and effectiveness of using remote code
attestation to protect runtime monitors from in-memory tampering. While runtime
monitors are valuable for detecting anomalous system behaviour, they remain
vulnerable to compromise in adversarial settings where attackers may have sufficient
privileges to alter or disable them during execution.

To address this, we designed and implemented a remote code attestation mechanism
that enables a trusted verifier to cryptographically validate the integrity of a runtime
monitor’s in-memory code. The scheme combines bytecode hashing, HMAC
authentication, and a challenge-response protocol to ensure that even minor
tampering triggers attestation failure, and was implemented for a Java-based monitor.

The attestation scheme was evaluated against a range of simulated attack scenarios,
including network-level manipulations and direct in-memory tampering. All tested
attacks, including subtle modifications, were successfully detected by the verifier,
demonstrating the robustness of the approach in adversarial conditions.

6.2 Future Work

While the results are promising, several avenues exist for further refinement:

e Further Optimisation: Future work could explore algorithmic refinements such as
more efficient sampling strategies to reduce computational overhead, improving
practicality for real-time or embedded systems.

e Tamper Recovery: Beyond detection, future research could focus on
incorporating active tamper response mechanisms. This includes patching of
compromised code or triggering system alerts to mitigate attacks more
effectively.

In summary, this work demonstrates that remote code attestation is a viable and
effective technique for detecting tampering in runtime monitors. With further
optimisation and development, it can form a critical layer in defending against
in-memory attacks.

35

References

[1] R. A.Ashraf, R. Gioiosa, G. Kestor, and R. F. DeMara, “Exploring the effect of
compiler optimizations on the reliability of hpc applications,” in 2017 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW),
IEEE, 2017, pp. 1274-1283.

[2] L. Binosi, G. Barzasi, M. Carminati, S. Zanero, and M. Polino, “The illusion of
randomness: An empirical analysis of address space layout randomization
implementations,” in Proc. 2024 ACM SIGSAC Conf. on Computer and
Communications Security, 2024, pp. 1360-1374.

[3] C. Colombo and G. J. Pace, Runtime Verification: A Hands-On Approach in Java.
Cham: Springer, 2022, ISBN: 978-3-031-09268-8. DOI:
10.1007/978-3-031-09268-8.

[4] C. Colombo, G. J. Pace, and G. Schneider, “Runtime verification: Passing on the
baton,” in Formal Methods in Outer Space: Essays Dedicated to Klaus Havelund on
the Occasion of His 65th Birthday, E. Bartocci, Y. Falcone, and M. Leucker, Eds.,
Cham: Springer, 2021, pp. 89-107, ISBN: 978-3-030-87348-6. DOI:
10.1007/978-3-030-87348-6 5.

[5] A. Francalanza et al., “A foundation for runtime monitoring,” in Proc. Int. Conf.
Runtime Verification, Springer, 2017, pp. 8-29.

[6] E. Bartocci, Y. Falcone, A. Francalanza, and G. Reger, “Introduction to runtime
verification,” in Lectures on Runtime Verification: Introductory and Advanced Topics,
Springer, 2018, pp. 1-33.

[7] C. Colombo, A. Curmi, and R. Abela, “Rvsec: Towards a comprehensive
technology stack for secure deployment of software monitors,” in Proc. 7th ACM
Int. Workshop on Verification and Monitoring at Runtime Execution (VORTEX),
Vienna, Austria: Association for Computing Machinery, 2024, pp. 13-18. DOI:
10.1145/3679008.3685542.

[8] H. Hui, K. McLaughlin, F. Siddiqui, S. Sezer, S. Y. Tasdemir, and B. Sonigara, “A
runtime security monitoring architecture for embedded hypervisors,” in Proc.
2023 IEEE 36th Int. System-on-Chip Conf. (SOCC), IEEE, 2023, pp. 1-6.

[9] F. Zhang, J. Wang, K. Sun, and A. Stavrou, “Hypercheck: A hardware-assisted
integrity monitor,” IEEE Transactions on Dependable and Secure Computing, vol. 11,
no. 4, pp. 332-344, 2013.

36

https://doi.org/10.1007/978-3-031-09268-8
https://doi.org/10.1007/978-3-030-87348-6_5
https://doi.org/10.1145/3679008.3685542

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

6 REFERENCES

A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. C. Skalsky, “Hypersentry:
Enabling stealthy in-context measurement of hypervisor integrity,” in Proc. 17th
ACM Conf. Computer and Communications Security (CCS), 2010, pp. 38-49.

B. Gassend, G. E. Suh, D. Clarke, M. V. Dijk, and S. Devadas, “Caches and hash
trees for efficient memory integrity verification,” in Proc. 9th Int. Symp.
High-Performance Computer Architecture (HPCA), IEEE, 2003, pp. 295-306.

T. Wehbe, V. Mooney, and D. Keezer, “Hardware-based run-time code integrity
in embedded devices,” Cryptography, vol. 2, no. 3, 2018, ISSN: 2410-387X. DOI:
10.3390/cryptography2030020. [Online]. Available:
https://www.mdpi.com/2410-387X/2/3/20.

G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas, “Efficient memory
integrity verification and encryption for secure processors,” in Proc. 36th Annu.
IEEE/ACM Int. Symp. Microarchitecture (MICRO), IEEE Computer Society, 2003,
p. 339.

J. A. Pendergrass and K. N. McGill, “Lkim: The linux kernel integrity measurer,’
Johns Hopkins APL Technical Digest, vol. 32, no. 2, pp. 509-516, 2013.

S. E. R. J. Surminski, “Securing embedded devices with remote attestation,” Ph.D.
dissertation, University of Duisburg-Essen, Jun. 2024. DOI:
10.17185/duepublico/82079.

A. Seshadri, A. Perrig, L. V. Doorn, and P. Khosla, “Swatt: Software-based
attestation for embedded devices,” in Proc. IEEE Symp. Security and Privacy, |EEE,
2004, pp. 272-282.

J. Dietrich, T. White, B. Hassanshahi, and P. Krishnan, Levels of binary equivalence
for the comparison of binaries from alternative builds, arXiv preprint
arXiv:2410.08427, 2025. [Online]. Available:
https://arxiv.org/abs/2410.08427.

V. Haldar, D. Chandra, and M. Franz, “Semantic remote attestation: A virtual
machine directed approach to trusted computing,” in Proc. 3rd Conf. Virtual
Machine Research and Technology Symp. (VM’04), San Jose, California, USA:
USENIX Association, 2004, p. 3.

S. Mei, Z. Wang, Y. Cheng, J. Ren, J. Wu, and J. Zhou, “Trusted bytecode virtual
machine module: A novel method for dynamic remote attestation in cloud
computing,” International Journal of Computational Intelligence Systems, vol. 5,
no. 5, pp. 924-932, 2012, ISSN: 1875-6883. DOI:
10.1080/18756891.2012.733231.

37

https://doi.org/10.3390/cryptography2030020
https://www.mdpi.com/2410-387X/2/3/20
https://doi.org/10.17185/duepublico/82079
https://arxiv.org/abs/2410.08427
https://doi.org/10.1080/18756891.2012.733231

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

6 REFERENCES

D. Mohindra, Env04-j. do not disable bytecode verification, SEI CERT Oracle
Coding Standard for Java, 2008. [Online]. Available:
https://wiki.sei.cmu.edu/confluence/x/0jdGBQ.

X. Leroy, “Java bytecode verification: Algorithms and formalizations,” Journal of
Automated Reasoning, vol. 30, no. 3, pp. 235-269, 2003.

A. Sharma, M. Wittlinger, B. Baudry, and M. Monperrus, “Sbom. exe: Countering
dynamic code injection based on software bill of materials in java,” arXiv preprint
arXiv:2407.00246, 2024.

A. S. Banks, M. Kisiel, and P. Korsholm, “Remote attestation: A literature review,’
arXiv preprint arXiv:2105.02466, 2021.

M. Ammar, B. Crispo, and G. Tsudik, “Simple: A remote attestation approach for
resource-constrained iot devices,” in Proc. 11th ACM/IEEE Int. Conf.
Cyber-Physical Systems (ICCPS), IEEE, 2020, pp. 247-258.

S. F. J. J. Ankergéard, E. Dushku, and N. Dragoni, “State-of-the-art software-based
remote attestation: Opportunities and open issues for internet of things,’
Sensors, vol. 21, no. 5, 2021, ISSN: 1424-8220. DOI: 10.3390/s21051598.
[Online]. Available: https://www.mdpi.com/1424-8220/21/5/1598.

M. Sommerhalder, “Hardware security module,” in Trends in Data Protection and
Encryption Technologies, Springer, 2023, pp. 83-87.

A. Tomlinson, “Introduction to the TPM,” in Smart Cards, Tokens, Security and
Applications, Springer, 2017, pp. 173-191.

[. D. O. Nunes, K. Eldefrawy, N. Rattanavipanon, M. Steiner, and G. Tsudik,
“VRASED: A verified hardware/software co-design for remote attestation,” in
Proc. 28th USENIX Security Symp. (USENIX Security 19), 2019, pp. 1429-1446.

A. Ibrahim, A.-R. Sadeghi, and S. Zeitouni, “SeED: Secure non-interactive
attestation for embedded devices,’ in Proc. 10th ACM Conf. Security and Privacy in
Wireless and Mobile Networks, 2017, pp. 64-74.

X. Carpent, N. Rattanavipanon, and G. Tsudik, “Remote attestation of loT devices
via SMARM: Shuffled measurements against roving malware,” in Proc. IEEE Int.
Symp. Hardware Oriented Security and Trust (HOST), IEEE, 2018, pp. 9-16.

X. Carpent, G. Tsudik, and N. Rattanavipanon, “ERASMUS: Efficient remote
attestation via self-measurement for unattended settings,’ in Proc. Design,
Automation and Test in Europe Conf. and Exhibition (DATE), IEEE, 2018,

pp. 1191-1194.

C. Paar and J. Pelz, Understanding Cryptography: A Textbook for Students and
Practitioners, 1st. Springer, 2010, ISBN: 978-3642041006.

38

https://wiki.sei.cmu.edu/confluence/x/0jdGBQ
https://doi.org/10.3390/s21051598
https://www.mdpi.com/1424-8220/21/5/1598

[33]

[34]

[35]

[36]

REFERENCES

A. Seshadri, M. Luk, E. Shi, A. Perrig, L. V. Doorn, and P. Khosla, “Pioneer:
Verifying code integrity and enforcing untampered code execution on legacy
systems,” in Proc. 20th ACM Symp. Operating Systems Principles, 2005, pp. 1-16.

Z. Wang, Y. Zhuang, and Z. Yan, “TZ-MRAS: A remote attestation scheme for the
mobile terminal based on ARM TrustZone,” Security and Communication Networks,
vol. 2020, no. 1, p. 1756 130, 2020. DOI: 10.1155/2020/1756130. [Online].
Available:
https://onlinelibrary.wiley.com/doi/abs/10.1155/2020/1756130.

R. Abela et al., “Secure implementation of a quantum-future GAKE protocol,’ in
Proc. Int. Workshop Security and Trust Management, Springer, 2021, pp. 103-121.

C. Colombo and G. J. Pace, “Runtime verification using larva,” in RV-CuBES 2017.
An International Workshop on Competitions, Usability, Benchmarks, Evaluation, and
Standardisation for Runtime Verification Tools, ser. Kalpa Publications in
Computing, vol. 3, 2017, pp. 55-63. DOI: 10.29007/n7td.

39

https://doi.org/10.1155/2020/1756130
https://onlinelibrary.wiley.com/doi/abs/10.1155/2020/1756130
https://doi.org/10.29007/n7td

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Glossary of Symbols
	Introduction
	Motivation
	Problem Overview
	Proposed Solution
	Aims and Objectives

	Contributions

	Background & Literature Review
	Runtime Monitors
	Security

	Measuring In-Memory Code
	Measurement Methodologies
	Bytecode

	Remote Attestation
	Hardware-Based Attestation
	Software-Based Attestation
	Hybrid Attestation

	Attestation Schemes
	Cryptographic Primitives
	Challenge-Response Protocol
	SWATT Attestation Scheme

	Coupon Collector's Problem
	Problem Description
	Calculating the expectation
	Applicability

	Related Work

	Specification & Design
	Design Criteria
	Threat Model
	Attacker Assumptions
	System Assumptions

	Bytecode Measurement
	Challenges
	Proposed Methodology

	Scheme Design
	Prover-Verifier Architecture
	Measurement Procedure
	Self-Attestation
	Challenge-Response Protocol
	Attestation Authentication
	Response Time Bounds

	Attestation Protocol

	Implementation
	Runtime Monitor
	Prover
	Java Agent
	Class Retransformation
	Bytecode Collection
	Static Bytecode Representation
	Bytecode Measurement
	Attestation Authentication
	Sending Proof to the Verifier

	Verifier
	Reference Hashes
	Connection Handling
	Challenge Issuance
	Response Time Bounds
	Proof Verification

	Evaluation & Optimisation
	Evaluation Setup
	Security Evaluation
	Network-Level Attacks
	In-Memory Code Tampering Attacks

	Performance Evaluation
	Optimisation (Pseudorandom Hash Traversal)
	Implementation
	Evaluation

	Conclusion & Future Work
	Conclusion
	Future Work

